

be carried in advance of felling, to identify whether any breeding red squirrel or dreys are located within that felling block. Surveys will be carried out as per NRA guidance (NRA, 2009, Ecological Surveying Techniques for Protected Flora and Fauna during the Planning of National Road Schemes. Dublin: National Roads Authority). Should active dreys be identified within the felling block to be felled, the following mitigations and best practice procedures will be followed to ensure that no breeding red squirrel sites are impacted: avoid clearfelling in the breeding season from February – September. Where this is not possible, zone felling away from the any identified dreys up to the end of June. Additionally, the following measures will be followed on a precautionary basis: As the proposed felling will result in a temporary reduction of food resources, supplementary feeding of red squirrel will be carried out if necessary.	
be carried in advance of felling, to identify whether any breeding red squirrel or dreys are located within that felling block. Surveys will be carried out as per NRA guidance (NRA, 2009, Ecological Surveying Techniques for Protected Flora and Fauna during the Planning of National Road Schemes. Dublin: National Roads Authority). Should active dreys be identified within the felling block to be felled, the following mitigations and best practice procedures will be followed to ensure that no breeding red squirrel sites are impacted: avoid clearfelling in the breeding season from February – September. Where this is not possible, zone felling away from the any identified dreys up to the end of June. Additionally, the following measures will be followed on a precautionary basis: As the proposed felling will result in a temporary reduction of food resources, supplementary feeding of red squirrel will be carried out if necessary.	
MM45 An invasive species Management Plan will be produced to ensure sufficient management of	
Rhododerdron is carried out within the site and that there is no continued spread as a result of the Proposed Project. 3 FEB 2023 0 0 6 0 NOTE OF THE PROPOSED FOR THE PROPOSED	

Ref. No.	Mitigation Measure	Audit Real	Action Required
MM46	 Measures will be in place to prevent the spread of invasive species during the proposed works. In addition, all necessary precautions will be taken to prevent the introduction of invasive species to the site from elsewhere. Best practice measures in relation to invasive species are described below: All earthworks machinery and forestry machinery will be thoroughly pressure-washed prior to arrival on site and prior to their further use elsewhere. Care will be taken not to disturb or cause the movement of invasive species fragments, either intentionally or accidentally. Rhododendron will be pre-treated in the season prior to felling operations. Any material that is imported onto any site will be verified by a suitably qualified ecologist to be free from any invasive species listed on the 'Third Schedule' of Regulations 49 & 50 of Regulations 49 and 50 of the European Communities (Birds and Natural Habitats) Regulations 2011 (S.I. 477 of 2011). This will be carried out by searching for rhizomes and plant material. The treatment and control of invasive alien species will follow guidelines issued by the National Roads Authority. The Management of Noxious Weeds and Non-native Invasive Plant Species on National Roads (NRA 2010). 	2 3 FEB 2023 0 06 0	COUNTY COUNTY
Air Qualit	and Dust		
MM47	In periods of extended dry weather, dust suppression may be necessary along haul roads and site roads to ensure dust does not cause a nuisance. If necessary, a water spreader will be used to dampen down haul roads to prevent the generation of dust where required. Water bowser movements will be carefully monitored to avoid, insofar as reasonably possible, increased runoff.		

Ref. No.	Mitigation Measure	Audit Result	Action Required
	 All plant and materials vehicles shall be stored in dedicated areas (on Site). The agreed haul route roads adjacent to the Site will be regularly inspected for cleanliness and cleaned as necessary. The Site access roads will be checked weekly for damage/potholes and repaired as necessary. The transport of construction materials to the Site that have significant potential to cause dust, will be undertaken in tarpaulin or similar covered vehicles where necessary. 		
MM48	 All construction and forestry vehicles and plant will be maintained in good operational order while onsite, thereby minimising any emissions that arise. When stationary, delivery and on-site vehicles will be required to turn off engines. Users of the Site will be required to ensure that all plant and vehicles are suitably maintained to ensure that emissions of engine generated pollutants are kept to a minimum. 		
Noise			
MM49	 All plant and machinery used on the site will comply with E.U. and Irish legislation in relation to noise emissions. Operation of plant: all construction operations will comply with guidelines set out in British Standard documents 'BS 5338: Code of Practice for Noise Control on Construction and Demolition Sites' and 'BS5228: Part 1: 1997: Noise & Vibration Control on Construction and Open Sites'. The correct fitting and proper maintenance of silencers and/or enclosures, the avoidance of excessive and unnecessary revving of vehicle engines, and the parking of equipment in locations that avoid possible effects on noise-sensitive locations was employed. 		
Traffic 5			
CONTINY COUNCIL	& DEVELOPMENT SECTION		

	(0)		
Ref. No.	Mitigation Measure	Audit Result	Action Required
MM50	 Resurfacing of the existing access with tarmacadam to tie into the existing R341 with a minimum radii of 13m provided and an access road width of 6m. The introduction of STOP road markings and signs in accordance with Figure 7.35 of the Traffic Signs Manual (TSM). "Agriculture (or Other) Machinery" warning signs are to be provided on both of the R344 approaches to the existing junction. Clearance of a visibility triangle (3m at the junction tapering to 1m at a distance of 140m) of strubs and bushes along the western side of the R344 in order to maximise visibility to the south of the junction. Clearance of a short section of shrubs to the north of the junction in order to provide clear visibility to the north. 		
Cultural H	Ieritage		
MM51	A walk-over archaeological survey of the site should be carried out following the clear-felling of existing forestry stands. Any archaeological sites/features detected during the walk-over survey will be preserved in-situ (avoidance).		
	Operational Phase	·	
Land, Soil	s and Geology/Water		
MM52	 Vehicles used during the operational phase will be refuelled off site before entering the site; No fuels will be stored on-site during the operational phase; and 		

Ref. No.	Mitigation Measure	Audit Result	Action Required
	 Spill kits will be available in all site vehicles to deal with accidental spillages and breakdowns; 		

MONITORING PROPOSALS

All monitoring proposals relating to the pre-commencement, construction and operational phases of the Proposed Project are set out in the relevant chapters of the Environmental Impact Assessment Report (EIAR).

This section of the Construction and Environment Management Plan groups together all of the monitoring proposals presented in the EIAR. The monitoring proposals are presented in Table 6-1 below.

By presenting the monitoring proposals in the format outlined, it is intended to provide an easy to audit list that can be reviewed and reported on during the future phases of the project. The tabular format in which the information is presented, can be further expanded upon during the course of future project phases to provide a reporting template for site compliance audits (Table 6-1).

Ref.	Survey / Monitoring Measure	Audit Result	Action Required
No.	Discount Phase		
rre-Cor	Prior to commencement of works in sub-catchments across the site main drain inspections will be competed to		_
MX2	ensure ditches and streams are free from debris and blockages that may impede drainage water discharge.		
мхз	Pre-commencement surveys will be undertaken prior to the initiation of works. The survey will include a thorough walkover survey to a 500m radius of all works areas, where access allows. If winter roosting or breeding activity of birds of high conservation concern is identified, the roost or nest site will be located and earmarked for monitoring at the beginning of the first winter or breeding season of the construction phase. If it is found to be active during the construction phase, no works shall be undertaken within a disturbance buffer (Forestry Commission Scotland, 2006; Ruddock and Whitfield, 2007) in line with industry best practise. No works shall be permitted within the buffer until it can be demonstrated that the roost/nest is no longer occupied.		
Constru	ction Phase		
MX4	Archaeological walkover of site will be undertaken following felling of trees.	THE DOCK	
MX6	Check dams will be inspected and maintained regularly to insure adequate performance. Maintenance checks will also ensure the centre elevation of the dam remains lower than the sides of the dam.		
MX7	A daily visual inspection of each settlement pond on the active site will be undertaken to identify when sediments are nearing capacity within the pond and sediment will be cleaned out as required. Settlement ponds will also be checked for anything else that might interfere with flows.		
MX8	Settlement ponds will be inspected weekly and following significant rainfall events i.e. after events of >25mm rainfall in any 24-hour period. Inlet and outlets will be checked for sediment accumulation and anything else that might interfere with flows. Inspection and maintenance of these structures during construction phase is critical to their functioning and purpose.		
MX9	All culverts will be inspected regularly to ensure they are not blocked by debris, vegetation or any other material that that the state of the state		

<ô>	DEVELOPMENT SPEND	Den Den	yclare Wild Western Peatlands Project - CEM CEMP F - 2023.02.10- 21060
Ref. No.		Audit Result	Action Required
MX10	The effectiveness of drainage measures designed to minimise runoff entering works areas and capture and treat silt-laden water from the works areas, will be monitored continuously by the Environmental Manager. The Environmental Manager will respond to changing weather, ground or drainage conditions on site as the project proceeds, to ensure the effectiveness of the drainage system is maintained in so far as is possible.		
MX11	The plant used should be regularly inspected for leaks and fitness for purpose.		
MX12	Regular inspections of all installed drainage systems will be undertaken, especially after heavy rainfall, to check for blockages, and ensure there is no build-up of standing water in parts of the systems where it is not intended. Inspections will also be undertaken after tree felling.		
MX13	During the construction phase field testing and laboratory water analysis of a range of parameters with relevant regulatory limits and EQSs should be undertaken for each watercourse and specifically, following heavy rainfall events (<i>i.e.</i> weekly, monthly and event based). This will be completed in consultation with Inland Fisheries Ireland.		
MX15	Any requirement for construction works to run into the merlin breeding season following commencement will be subject to pre-construction bird surveys to confirm the presence/absence of breeding merlins.		
MX17	A Project Ecologist will be appointed. The responsibilities and duties of the Project Ecologist will include the following: Undertake a pre-construction transect/walkover bird survey to ensure that significant effects on breeding birds will be avoided. Inform and educate on-site personnel of the ornithological and ecological sensitivities within the Proposed Project area. Oversee management of ornithological, water quality protection and ecological issues during the construction period and advise on these issues as they arise. Provide guidance to contractors to ensure legal compliance with respect to protected species onsite.		

Ref. No.	Survey / Monitoring Measure	Audit Result	Action Required
	Liaise with officers of consenting authorities and other relevant bodies with regular updates in relation to construction progress.		
Operation	onal Phase		
MX18	Monthly sampling for laboratory analysis for a range of parameters adopted during pre-commencement and construction phases will continue for at least six months during the operational phase. The Project Hydrologist will monitor and advise on the results received from the testing laboratory.		

7.2

COMPLIANCE AND REVIEW

7.1 Site Inspections and Environmental Audits

Routine inspections of activities will be carried out on a daily and weekly basis by the Site Manager/ Environmental Manager or by a suitably qualified and competent person to ensure all controls are in place to prevent negative environmental impacts, due to the construction activities taking place.

Environmental inspections will ensure that the works are undertaken in compliance with this CEMP. Environmental site inspections will be carried out by suitably trained staff.

Environmental Compliance

The following definitions shall apply in relation to the classification of Environmental Occurrences during the infilling works:

900 Environmental Near Miss

An occurrence which if not controlled or due to its nature could lead to an Environmental Incident.

038-IN3Wd073A3Fipvikopmental Incident

Any occurrence which has potential, due to its scale and nature, to migrate from source and have an environmental impact.

Environmental Non-Compliance

Non-fulfilment of a requirement includes any deviations from established procedures, programs and other arrangements related to the CEMP.

7.3 Corrective Action Procedure

A corrective action is implemented to rectify an environmental issue on-site. Corrective actions will be implemented by the contractor, as advised by the Site Environmental Manager. Corrective actions may be required as a result of the following:

- Environmental Audits.
 - Environmental Inspections and Reviews.
 - Environmental Incidents; and,
 - Environmental Complaints

A Corrective Action Notice will be used to communicate the details of the action required to the main contractor. A Corrective Action Notice is a form that describes the cause and effect of an environmental problem on site and the recommended corrective action that is required. The Corrective Action Notice, when completed, will include details of close out and follow up actions.

If an environmental problem occurs on site that requires immediate attention direct communications between the Contractor's foreman and the Site Environmental Manager will be conducted. This in turn will be communicated to all the site staff involved. A Corrective Action Notice will be completed at a later date.

APPENDIX 4-4

TREE PROTECTION SPEC

O O O O

2 3 FEB 2023 0 0 6 0

SALWAY COUNTY COUNCIL

Standard Range

A PGI Company Fiberweb Geosynthetics Ltd Blackwater Trading Estate The Causeway Maldon CM9 4GG United Kingdom

> T: +44 (0)1621 874201 F: +44 (0)1621 874299

Issue: 02 Date: 10.01.14

Product Information Sheet

DESCRIPTION Extruded polypropylene tube which protects and helps establish trees

APPLICATION For the protection of trees against animal browsing, herbicide spray and for the improvement of growth through a microclimate

SECTORS Forestry and Horticulture

		TUBE	X Standard Rai	nge	TUBE	K Standard Plus	Range
Dimensions							
Height	m	0.6	0.75	1.2	1.2	1.5	1.8
Diameter	mm	73-105	73-105	73-105	80-120	80-120	80-120
o of ties		1 (option to have 2)	2	2	2	2	2
ype of tie		Releasable	Releasable	Releasable	Releasable	Releasable	Releasable
Size of tie	inch	9	9	9	10	10	10
Top tie height (+ tolermon)	mm	435-465	485-515	810-840	810-840	1110-1140	1315—1340
Bottom tie height (- solerance)	mm		185215	235-265	235-265	235-265	235-265
Av. Weight per tube	9	72	90	146.5	175	221	265
Packaging							
Nest		5	5	5	5	5	5
Bundle		100	100	100	60	SO S DEVELO	60
Bag or strap banded		Bag	Bag	Strap Banded	Strap Banded Q	ANNING & DEVELO	LINEW DECK

2 3 FEB 2023 0 0 6 0

GALWAY COUNTY COUNCIL

Material	For all sizes	
Tube	Polypropylene	
Tie	Nylon	
Colour	Green	
Service Life	Minimum 5 years	
Degradability	Photodegradable	
Manufacturing tolerance	- 2.5cm	
Recommended support	Stake	

^{*}If you require other sizes that are not specified within this data sheet please get in contact.

As part of its continual improvement process Fiberweb Geosynthetics Ltd reserve the right to change the properties listed on this data sheet without prior notice.

TM indicates a trade mark of Fiberweb plc or a Fiberweb Group company, many of which are registered in a number of countries around the world.

^{**} We recommend to use TUBEX Combitube on exposed site conditions.

0>

APPENDIX 4-5

DRAINAGE MAPS (HES)

O 6 O

COUNTY COUNCIL

Derryclare Ecological Report

Ecological Report- Derryclare

Part 1: Habitat Survey

Prepared by Jackie Hunt and Louise Scally, ANIAR Ecology.

20th August, 2021

Contents

1. Introduction	2
2. Methodology	2
2.1 Field Survey	2
2.2 Data collation and mapping	2
2.3 Habitat assessment	3
3. Results	3
3.1 Existing data	3
3.2 Current and target habitats	4
Area A	6
Current Walling States WARD 9	6
Target Habitats	8
Area B. Current habitats	12
Target Habrats73A3Q.9.0MWWY\d	14
Area C	18
Current habitats	18
Target Habitats	20
Area D	24
Current habitats	24
Target Habitats	24
Appendix I: Recording form used during walkover survey	
Appendix II: Definition of Terms	

1. Introduction

Habitat surveys were completed at Derryclare to inform the preparation of a habitat restoration plan. The objectives of the survey were as follows:

- to characterise the habitats present,
- to identify habitats, flora and fauna of conservation interest
- to assess the potential of habitats for restoration
- to map the location and extent of invasive species and lodgepole pine/sitka natural regeneration

The results from the habitat surveys form Part 1 of this report. The results from the ecological monitoring will be in Part 2. This report is provided along with associated shapefiles and attribute data, excel data and photographs.

2. Methodology

2.1 Field Survey

Walkover surveys were completed by Jackie Hunt and Louise Scally on the following dates:

- 15th to 18th June
- 7th and 16th July

The surveys aimed to sample as much of the site as possible in order to classify the habitats and consider their potential for restoration. Habitats were classified following Fossitt (2000). Additional data was collected on a standard recording form (Appendix I) regarding peat depth, features of modification owing to forestry (furrows, drains, brash), pressures and threats (grazing, invasives, non native conifer regen), slope, soil type and peat depth.

2.2 Data collation and mapping

Existing data was reviewed from the following sources:

- Coillte inventory data, sub and compt data
- Geological Survey Ireland
- **EPA**
- Biodiversity Ireland
- NPWS data request

The data from the surveys was collated in excel (spreadsheet provided separately). Additional Coillte inventory data (plantation species, plant year, yield class, rotation, fell year) was also collated into the same excel spreadsheet, given the influence of these factors on existing habitat, restoration potential and management options.

Photographs were taken at each recording location (folders with photos provided separately).

Habitats were mapped in ArcGISpro and key data stored in attribute table (Shapefiles available separately).

2.3 Habitat assessment

2.3.1 Current habitats

The current habitats were assessed based on the plant communities present. Also considered was forestry cover (past and current), peat depth, topography and adjacent habitats.

Pressures such as rhododendron spread and regeneration were assessed, along with non native conifer regeneration and grazing.

Other consideration were the level of modification such as brash, stumps, dead stems, furrows, ridges and drains.

These factors were considered with regards to the describing current habitats and with regards to restoration potential, target habitat and actions to achieve targets.

2.3.2. Target habitats

Target habitats were assessed based on likely pre-afforestation habitats, the quality of current habitats and their restoration potential based on plant communities present and level of modification. Hydrology is a key factor in terms of restoration potential given that the site is dominated by peatland habitats and ecological habitats and ecological habitats and ecological habitats are provided by RPS Consultants of the site to re-wet. The hydrological assessment was provided by RPS Consultants of

3. Results

The Derryclare property covers 567Ha. The site was previously blanket bog and wet heath with outcropping rock, knows and outgroup was planted in the 1960's with Sitka Spruce and Lodgepole Pine. Lands were planted throughout the 567 ha except for a small area of blanket bog (4.7Ha) which while drained presumably remained too wet to plant.

S3 EEB 5053 0 0 0 0

The Derryclare property is surrounded by mountains with wet heath, blanket bog and oligotrophic lakes (Derryclare Lough and Lough Inagh), these and other associated habitats are protected by the Twelve Bens/Garraun Complex Special Area of Conservation (002031). An area of old oak woodland is present on the shore of Derryclare Lough and lies directly adjacent to the Derryclare property. This is a Nature Reserve owned by NPWS and is part of the Twelve Bens/Garraun Complex SAC (Figure 1).

3.1 Existing data

There are several records for protected species which relate to the 10x10km square within which the property lies. This data was provided by NPWS (Rare and Protected Species request) in excel and shapefile.

The property lies directly adjacent to and surrounded by the Twelve Bens/Garrun Complex. This SAC is designated for a number of habitats and species of conservation interest (see below). Those shown in bold are "connected" to the Derryclare. This connection may be direct such as otter foraging in the rivers within the property or indirect such as the rivers which flow through the property flow into Lough lnagh which as an oligotrophic lake.

Qualifying Interests:

- Oligotrophic waters containing very few minerals of sandy plains (Littorelletalia uniflorae)
 [3110]
- Oligotrophic to mesotrophic standing waters with vegetation of the Littorelletea uniflorae and/or Isoeto-Nanojuncetea [3130]

- Alpine and Boreal heaths [4060]
- Blanket bogs (* if active bog) [7130]
- Depressions on peat substrates of the Rhynchosporion [7150]
- Siliceous scree of the montane to snow levels (Androsacetalia alpinae and Galeopsietalia ladani)
 [8110]
- Calcareous rocky slopes with chasmophytic vegetation [8210]
- Siliceous rocky slopes with chasmophytic vegetation [8220]
- Old sessile oak woods with Ilex and Blechnum in the British Isles [91A0]
- Margaritifera margaritifera (Freshwater Pearl Mussel) [1029]
- Salmo salar (Salmon) [1106]
- Lutra lutra (Otter) [1355]
- Najas flexilis (Slender Naiad) [1833]

3.2 Current and target habitats

Given the size of the Derryclare property it is divided into three main areas (A, B, C), with a fourth area (Area D) to capture the outlying parts (Figure 1). The current and target habitats for each Area are mapped and described by below.

Figure 1. Derryclare Property showing adjacent Special Area of Conservation, Derrcylare Nature Reserve, Lough Inagh (northern) and Derryclare Loughs (southern) and watercourses.

Area A.

This northern part of the site begins in the west on the slopes of Binn an Choire (part of the Twelve Bens). The slopes are steep to moderate as they fall east before becoming gentle and flat as they reach the shore of Lough Inagh. Soils are blanket peat on the gentle to flat terrain, with peaty podzols on moderately to steeply sloping ground. There is an extensive network of eroding upland rivers and streams throughout

Current habitats

Overview

Peatland habitats have been modified by afforestation. Aside from conifer plantation, modification includes drains, ridges and furrows, brash, old stems and stumps. There is mosaic of plantation stages within this area. Parts were planted in the 1960's and have not yet been felled. Other parts have been felled, with no replant and other parts are second rotation forestry. Yield class in this area is generally low, being 10 or less and in places 0. Current habitats are shown in Figure 2 and described below.

Figure 2. Current habitats in Area A.

Habitat descriptions

Non Calcareous Spring (FP2). Stream rises here with willow scrub and Sphagnum mosses. Confiners (SS/LP) also present.

felled along the southern side of the watercourse. The watercourse has natural features with glide of and riffle areas, natural steps and pools. The stream edge supports scattered willow, rowan and holly.

The northern side of the stream remain plantation dominated in the lower reaches, but has been cleared in places to leave regenerating wet heath.

Wet Heath (HH3). Unplanted wet heath is present in the upper steep slopes of this area. Scattered conifers (LP) are present, presumably self-seeded. Calluna vulgaris and Molinia caerulea are abundant. Other flora includes Erica cinerea, Polygala serpyllifolia, Pontentilla erecta and Tricohporum cespitosum. Sphagnum mosses are present but not abundant. There are patches of Pteridium aquilinum. The wet heath is grazed, with evidence of browsing and sheep paths.

Wet Heath and Immature Conifer plantation (HH3_WS2). Moderately sloping ground down to flat area with deeper peat (PB3_WS2). While this area is second rotation forestry deep heather is abundant (Calluna vulgaris and Erica Cinerea) along with Molinia caerulea. Other flora include: Drosera rotundifolia, Potentilla erecta, Pedicularis sylvatica and Tricohporum cespitosum. Spaghnum mosses are present and ferns in drier areas (Blechnum spicant, Dryopteris dilatate). There are scattered confiers (SS/LP) and some pockets of very low yield class first rotation forestry (undev). Deep furrows are present but are becoming sphagnum filled. Stems are stumps are becoming moss covered. Confiel regeneration is accasional.

Blanker tog (PB3). Small area of deep peat which slopes down to the lake. Clearfelled in 2009 with no replant. Blanket bog is regenerating with spaghnum hummocks and pools and grades to wet heath on sloping ground. Blanket bog flora includes sphagnum mosses, Calluna vulgaris, Drosera rotundifolia, Erica cinerea, Potentilla erecta, Pedicularis sylvatica, Trichophorum germanicum, Rhynchospora alba, Molinia caerulea. Flora of drier habitats is also present (associated with brash and dead stems) and includes Rubus fruticosus, Galium saxatile and polytricum mosses. There is some regeneration of native species (Rowan, Holly, Birch), though none beyond seedling stage. Conifer regeneration is occasional.

Failed conifers on blanket bog (Undev_PB3). Pockets of deep peat which were planted in 1963. The conifers have failed to grow beyond c. 5m and stems are thin. A small canopy is present where stems remain alive. The deep peat supports abundant sphagnum mosses including hummocks; and pools are present. The flora includes *Calluna vulgaris*, *Drosera rotundifolia*, *Erica cinerea*, *Potentilla erecta*, *Carex echinata* and *Molinia caerulea*. Rhododendron is present (small clumps and seedlings).

Conifer plantation (WD4). Much of this area is dominated by conifers planted in the 1960s' which have not yet been felled (LP/SS). One area of second rotation plantation is also present. The areas of conifer plantation are described below:

- WD4 on deep peat. 1960's plantation dominates the large area of deep peat on flat and gentle slopes next to Lough Inagh. The plantation varies in success with pockets of failed or undeveloped forestry and other areas with tall trees and good stems. The field layer reflects growth. Tall stems (c. 35m in places) and closed canopies dominate dry compact peat soils with furrows and mounds. Here, the field layer is dominated by pine needles and mosses ("dry" mosses). Spaghnum moss is limited to occasional wet pockets in furrows and Molinia caerulea to gaps in the canopy. Where the peat has retained moisture and the water table is higher tree growth is poor and the field layer retains elements of the former peatland community (Molinia caerulea, sphagnum mosses). Rhododendron was present but not widespread. This is largely closed canopy limiting growth of all flora with the exception of mosses, scattered Dryopteris dilatate and the odd Hedera helix seedling. Occasional native (Rowan, Birch) and conifer regen (SS).
- WD4 on moderately to steeply sloping ground is present above the access track where the peat depth is generally less than 50cm but with pockets of deeper peat. This habitat is dominated by

- conifers with closed canopy and diminished field layer (pine needles with "dry mosses", polytrichum mosses). Furrows and drains are present along with pockets of windblow (many fallen stems). Some peatland community species persist and *Molinia caerulea* is present where light allows and sphagnum mosses in wet furrows. There are several unplanted pockets throughout (unplanted rocky knolls) and here the wet heath community remains with *Calluna vulgaris*, *Erica cinerea*, *Potentilla erecta*, *Trichophorum germanicum*, *Polygala serpyllifolia*, *Molinia caerulea* and sphagnum mosses. *Pteridium aquilinum* is present in the upper slopes were the canopy opens and it grades into unplanted wet heath.
- Second rotation WD4 is present between the moderately to steep sloping higher ground and the largely flat expansive area of deep peat. Peat depths are more variable but reach over 1m in depth. This area was felled and replanted in 2011/12. Planted conifers have not yet created a canopy and elements of a peatland community (e.g. Calluna vulgais, Molinia carulea) remain. Either the first rotation forestry failed to create a closed canopy and a peatland community was retained or this community has recovered since felling in 2011/12. There is regeneration of conifers and Rhododendron is present especially along the roadside where it is regenerating.

Recently felled woodland (WS5). An area of deep peat (some shallower peats and riparian habitat also) that was planted in the 1960's and felled in 2017. The habitat is highly modified by brash, stumps and fallen stems which support plant communities of drier habitats (e.g. *Digitalis purpurea*, "dry mosses", polytrichum mosses) and disturbed wetlands (e.g. *Juncus effusus*, *Juncus squarrosus*, *Juncus bulbosus*). Deep drains and pools are also present which support abundant sphagnum mosses. Flora typical of peatland habitats is present with Calluna vulgaris, Erica cinerea, Potentilla erecta, *Carex echinata*, *Molinia caerulea* and *Cladonia* spp. There is regenerating conifers (SS, LP) and Rhodendron (Clumps and regeneration). A stream runs through this felled area.

Target Habitats

Target habitats have been considered based on plant communities present, peat depth, forest cover and history adjacent habitats and critically the hydrological assessment.

While the habitats in Area A have been modified by afforestation plant community's characteristic of peatland habitats remain. Closed canopy afforestation causing complete loss of field layer is present, however a mosaic of habitats with varying degrees of modification remains. This varies from closed canopy planation with lack of field layer to recovering wet heath in second rotation plantation and to open areas throughout planted areas which were not planted or where the trees failed. There are also areas which have been felled and where blanket bog recovery is underway or beginning, post afforestation.

A key factor in consideration of target habitats is the hydrological assessment. This assessment has found that with drain blocking and other actions re-wetting of the peatlands at Derryclare is possible. As such there is potential to restore the original blanket bog and wet heath which were present in this Area pre-afforestation. Actions will be required to mitigate on going afforestation impacts (conifer canopy, drains, furrows, brash/stems), impacts from restoration actions (e.g. sediment and nutrient release) and to mitigate future pressures on achieving target habitats (rhododendron spread, non native conifer regeneration, retained nutrient load, slow progress). However, with appropriate management and time there is restoration potential. This said it is possible that the target habitats will have to be modified if the post afforestation pressures and level of restoration action becomes unmanageable or no longer practical.

The target habitats for this Area are principally blanket bog and wet heath (Figure 3). In terms of achieving target habitats a number of "Management Scenarios" are described where the attributes of forest cover, history, yield class and slope have been considered. Areas with similar attributes were grouped under different scenarios (Figure 4). This exercise was carried out in order to assess the great variety of attributes over a large site. Pressures within each scenario area are described and proposed actions to achieve target habitats described (Table 1).

Figure 3. Target habitats for Area A (See table 1)

ea A (See Figures 3&4).

Scenario	Target	Pressures	Actions
A 1st rotation, gentle (or flat) slope, dead stand on PB3	PB3	Rhododendron (clumps and regen). Conifer regeneration	Clear failed trees Block drains Remove and control rhododendron regeneration thereof. Remove and control conifer natural regeneration
Note: Very wet ground	; water ta	ble has remained high in these s	small areas. Surrounded by plantation.
B 1st rotation, gentle slope, low or med YC on PB3 (small amount of 2nd rotation)	PB3	Wind blow in places (single, many) Rhododendron throughout (rare to occasional) Red deer present. Conifer regeneration .	Remove conifers Remove logs and brash during felling. Block drains Remove and control rhododendron regeneration thereof. Remove and control conifer natural regeneration

Scenario	Target	Pressures	Actions
Threat of spread of rho mosses).	dodendro	on once area cleared as peat is v	very dry with no field layer (aside from
D 1st rotation,	HH3_P	Windblow (many)	Remove conifers
moderate slopes,	В3	Rhododendron occasional	Block drains
low and medium YC	10090	Deer present	Remove and control rhododendron
on HH3 (knolls, rock).		Jan present	regeneration thereof.
on mis (knons, rock).			Remove and control conifer natural
			Control of the contro
Mata, Francian viel, sive		for hearth field leaves the second	regeneration.
			ler some stands and invasion by
		of brash and stems as much as	1
E 1st rotation, steep	HH3_P	Windblow (scattered)	Remove conifers
slope, low YC on HH3	B3	Rhododendron rare	Control rhododendron regeneration.
		Sheep grazing	Control conifer natural regeneration.
			Control bracken
			Control grazing (sheep)
Note: As above, and slo	ope is stee	per.	
20	10 1		
G 2nd rotation,	нн3	Rhododendron rare	Remove conifers
moderate slope with		Conifer regeneration	Control rhododendron regeneration.
low to high YC on		Deer browsing	Control conifer natural regeneration
нн3			Control grazing (deer)
Note: Wet heath habita	at recover	ing from 1st rotation. Restoration	
		10.75	
I 2nd rotation, gentle	PB3_H	Rhododendron occasional	As above
slope, med YC on	H3	AND A CONTRACTOR OF THE SECOND CONTRACTOR OF T	
PB3_HH3	1000000		1.0
Note:		Y 3 13 7	
L Felled <12 yrs, no	PB3	Rhododendron frequent to	Block drains
replant, gentle slope,	120,000	occasional	Remove as much brash and felled stems
recovering PB3.		Conifer regeneration	as possible.
recovering ross.		conner regeneration	Remove and control rhododendron
			regeneration thereof.
			Remove and control conifer natural
			regeneration.
Note:			
Q Unplanted, HH3	НН3	Bracken patches	Control bracken
The second secon	- m. v.	Sheep grazing	Control grazing (sheep)
Note: Steep ground adj	acent to o		
V Felled 2009, gentle	FP2	Conifers	Remove conifers
	11.4	Conners	
slope, spring with			Retain willow.
willow and conifers			Protect wetland.
Note: Nutrient enrichm	ent of Spr	ing waters	OLANNING & DEVELOPMEN
			PLANNING & DEVELOPMENT SE
			23 FEB 2023 0 0 5 C
			CWA.

Figure 4. Management "scenarios" for Area A (See Table 1).

Area B.

This middle part of the site lies on the lower flanks of the mountain Doire an Chláir (peak of the oak wood of the plain) with a peak height of 677m and and includes a small rocky summit with a peak height of 190m. The land around this knoll slope steeply initially but then the slope become morerate and gentle at the shore of Lough Inagh. Between the mountain slope of Doire and Chláir and the smaller rocky summit there is an area of flat land which supports a basin of blanket peat. Peaty podzols dominate the steep and moderate slopes which also support some surface rock, most abundant on the rocky summit. As the moderate slopes grade into gentle slope blanket peats dominate down the shore of Lough Inagh. This area is bordered by a river to its north but the river network is less extensive than to the north (Area A) and south (Area B).

Current habitats

Overview

Existing habitats have been modified by afforestation. Modification includes planted conifers, drains, furrows and ridges, brash, old stems and old stumps. This Area is largely dominated by either second rotation plantation or recently felled 1st rotation on steeper ground which has not been replanted. There is an area of 1960's plantation on the slopes of summit 190m and another small pocket lower down and next to Derryclare Nature Reserve. Within the second rotation plantation yield class is generally medium to high (mostly YC 14, but 18 and 10 in places). Current habitats are shown in Figure 5 and described below.

Figure 5. Current habitats in Area B

2 3 FEB 2023 0 06 0

Eroding/Upland River (FW1) and Recently felled woodland (WS5)

The freshwater river is described in Area A. Beside this river on the southern bank and along the edge of Lough Inagh the plantation was felled in 2010 and not replanted. The peat depth is greater than a metre indicating blanket bog habitat. In places the riparian habitat is dominated by stumps and fallen and stems along which are providing habitat for regenerating conifers and rhododendron. Other parts are dominated by rushes (Juncus spp.). Stumps and fallen stems provide habitat for plant communities of drier habitats (e.g. (e.g. Rubus fruticosus, Galium saxatile, Digitalis purpurea, "dry mosses", polytrichum mosses). However, species typical of peatland habitat remain with Calluna vulgaris, Pontentilla erecta and Molinia caerulea. There is some naturally regenerating birch and willow. Conifer regeneration is abundant (SS) along. Rhodendron is occasional and is regenerating.

Wet grassland_Upland River (GS4_FW1) and Conifer Plantation (WD4)

Area of second rotation plantation in a small valley or dip with a stream. The flat ground either side of the stream is dominated by rushes (Juncus spp). The sloping ground is conifer plantation on wet heath. The conifer plantation is young (2015 planting) and there is no canopy allowing the wet heath to develop at present. The wet heath is modified by stumps, old stems and second rotation planting of conifers. However, the peatland community persists with sphagnum mosses, Calluna vulgaris, Erica tetralix, Erica cinerea, Pontentilla erecta and Molinia caerulea. There is natural regeneration of conifers and of Rhododendron

Wet heath Exposed Siliceous Rock (HH3_ER1)

PLANNING & DEVELOP Rocky summit with unplanted wet heath. This area was never planted and has not been modified by afforestation. Exposed rock is present, the peat depth is <50cm and a wet heath community is present. There is evidence of grazing (though not damaging) and of wind erosion (exposed peat faces). The wet heath flora includes: Calluna vulgaris, Erica tetralix, Erica cinerea, Pontentilla erecta, Molinia caerulea, Narthecium ossifragum, Pedicularis sylvatica, Eriophorum vaginatum, Eriophorum angustifolium, Schoenus nigricans and sphagnum mosses.

Conifer plantation (WD4)/ Wet heath (HH3), and Immature woodland (WS2)

Much of the eastern moderate and lower slopes of this site are dominated by second rotation conifer plantation of moderate to high yields. The plantation is not yet closed canopy (10/20 years old) but is dense in places, owing both to replanting and to natural regeneration. There are frequent open areas where the trees have failed, the land is rocky or wet and was not planted. The peat depth is generally greater than 1m. The peatland habitats have been modified by first and by second rotation planting. Elements of the peatland community remain especially in forest rides and in unplanted/failed area. Rushes are a feature and are dominant in places, perhaps influenced by nutrient enrichment but also a reflection of the wet and waterlogged soils. Species typical of peatlands persist and include: Calluna vulgaris, Erica cinerea, Potentilla erecta, Carex echinata, Molinia caerulea and sphagnum mosses. Brash, stems and stumps create drier habitat and support Circaea lutetiana, Rubus fruticosus, polytrichum mosses and "dry" mosses. There is natural regeneration of conifer and thododendron. Deer tracks, droppings and browsing were present.

One area of 1960's plantation is present on the southern slopes of the rocky summit. Peat depth is <50cm and the yield class is low (<10). The plantation canopy has closed and the field layer is very poor and crossed by furrows and drains. Windblow is present. The field layer is dominated by pine needles and "dry" mosses with rare pockets of spaghnum mosses in the bottom of furrows where water remains and occasional *Molinia careulea*, ferns (*Dryopteris dilatate*) and willow in wet areas. Regeneration of native trees or conifer trees or was not recorded. Rhododendron was present and regenerating. The lower slope of this area is deep peat.

Recently felled woodland_Wet heath (WS5_HH3)

This is an area of steeply sloping ground where the first rotation crop (1960's) was felled in 2017. The habitat is dominated by brash, remnant conifer stems and stumps and peat depth is < 50cm. Piles of brash and large stumps remain in many places. The brash, stumps and stems create dry habitat above the water table and the plant community reflect with species such as *Circaea lutetiana*, *Rubus fruticosus*, *Agrostis* spp, polytrichum mosses and "dry" mosses. Other plants of disturbed ground are also present such as *Rumex* spp, *Juncus bulbosus* and *Juncus effusus*. Wet peatland remains and although modified by forestry (drains, furrows, ridges) typical species of wet heath habitats persist with *Calluna vulgaris*, *Potentilla erecta*, *Molinia caerulea* and sphagnum mosses. There are pockets of unplanted wet heath which are dominated by *Molinia caerulea*. Rhododendron is present.

Recently felled woodland_Blanket bog (WS5_PB3)

This is a pocket of deep peat which lies in a basin between the mountain side and the rocky knoll. The land is flat and was planted with neat rows of conifers. The conifers have been felled leaving neat rows of stumps with furrows, brash, felled stems and bare peat which provide habitat for species such as Digitalis purpurea and "dry" mosses; Juncus effusus is present in wetter areas. While the peatland flora is much diminished in extent and diversity pockets remain with Calluna vulgaris, Erica tetralix, Narthecium ossigfragum, Potentilla erecta, Carex echinata, Trichophorum germanicum and Molinia caerulea; sphagnum mosses are rare. Over the fence where the land was not planted and the blanket bog community remains (though will have suffered hydrologically). Rhododendron is present and regenerating.

Target Habitats

Target habitats have been considered based on plant communities present, peat depth, forest cover and history, adjacent habitats and critically the hydrological assessment.

While the habitats in Area B have been modified by afforestation (both first and second rotation) plant community's characteristic of peatland habitats remain.

A key factor in consideration of target habitats is the hydrological assessment. This assessment has found that with drain blocking and other actions re-wetting of the peatlands at Derryclare is possible. As such there is potential to restore the original blanket bog and wet heath which were present in this Area pre-afforestation. Actions will be required to mitigate on going afforestation impacts (conifer canopy, drains, furrows, brash/stems), impacts from restoration actions (e.g. sediment and nutrient release) and to mitigate future pressures on achieving target habitats (rhododendron spread, non native conifer regeneration, retained nutrient load, slow progress). However, with appropriate management and time there is restoration potential. This said it is possible that the target habitats will have to be modified if the post afforestation pressures and level of restoration action becomes unmanageable or no longer practical.

The target habitats for Area B are largely blanket bog and wet heath or a mosaic of these habitats to reflect peat depth (Figure 6). Native woodland is a further target habitat which have needed for land adjacent to Derryclare Nature Reserve and for the slopes of the rocky summit (though this could also be HH3 target) and for connecting lands between. In terms of achieving target habitats a number of "Management Scenarios" are described where the attributes of forest cover, history, yield class and

slope have been considered. Areas with similar attributes were grouped under different scenarios (Figure 7). This exercise was carried out in order to assess the great variety of attributes over a large site. Pressures within each scenario area are described and proposed actions to achieve target habitats described (Table 2).

Figure 6. Target habitats for Area B (See Table 2) 0 9 0 0 EZOZ 334 E S

Table 2. Target habitats, pressures, actions and notes for various scenarios in Area B (See Figures 6&7).

Scenario	Target	Pressures	Actions	
C 1st rotation, gentle slope, knolls, low YC on HH3	WN1	Rhododendron rare Conifer (SS) regeneration rare. Grazing	Gradual conversion (natural regeneration and small coupe planting) to native woodland (CCF) with oak, birch, holly, rowan and Scots pine. Retain some conifers as future veterans and for squirrels. Remove and control rhododendron, rhododendron and conifer regeneration	
Note: Adjacent to Derr	yclare Nat	ture Reserve.		
D 1st rotation, moderate slopes, low YC on HH3.	WN1_ PB3	Windblow (scattered) Rhododendron frequent	Remove conifers (CCF unlikely to work owing to windblow). Plant as above. Remove and control rhododendron regeneration thereof. Remove and control conifer natural regeneration.	

Scenario	Target	Pressures	Actions
			rains and restore. Lies adjacent to larger
			however it provides and corridor of native
			e conifer retention in view of squirrels.
F 2nd rotation, gentle	HH3_P	Rhododendron occasional to	Remove conifers
slope, med & high YC	B3	rare	Block drains.
on PB3_HH3	mosaic		Control rhododendron regeneration.
			Control conifer natural regeneration.
			d another option. However, peat depth is
>1m and elements of p be suitable for birch (se	1000	to the same of the	posed as first priority. Pockets of HH3 may
G 2nd rotation,	HH3	Rhododendron rare	Remove conifers
moderate slope with	2000000	Conifer regeneration	Control rhododendron regeneration.
low to high YC on		Deer browsing	Control conifer natural regeneration
нн3			Control grazing (deer)
Note:			
I 2nd rotation,	PB3_	Rhododendron rare to	Remove conifers
moderate/gentle	нн3	occasional	Block drains.
slope, med YC on	mosaic) ESTERIA MERCANICACIÓ	Control rhododendron regeneration.
PB3_HH3	STREET PROVIDES		Control conifer natural regeneration.
Note: Similar to F.			9
J 2nd rotation,	WN1	Rhododendron rare	Gradual conversion (natural regeneration
moderate slope, high	*****	Conifer regeneration	and small coupe planting) to native
YC on HH3		conner regeneration	woodland (CCF) with oak, birch, holly,
TC OII TITIS			rowan and Scots pine.
		of the second	Retain some conifers as future veterans
			and for squirrels.
		×	Remove and control rhododendron,
Note: Contiguous to ot	her WN1 a	area (C).	rhododendron and conifer regeneration.
L Fallad (13) yes no	PB3	Rhododendron rare	Block drains
L Felled <12 yrs, no	PB3	Rhododendron rare	
replant, gentle slope,			Remove as much brash and felled stems
recovering PB3.			as possible.
			Remove and control rhododendron
			regeneration thereof.
		아이를 보고 있다면 아이들은 아이들은 아이들은 아이들은 아이들은 아이들은 아이들은 아이들은	contiguous to PB3 which was never planted nt habitat will also be enhanced).
N Felled, no replant,	нн3	Rhododendron occasional to	Block drains
steep/gentle slope,	4,10,100	rare	Control rhododendron regeneration.
recovering HH3		Ture	Control conifer natural regeneration
	oon slope	is recovering. It will take time.	Useful example for other similar areas
which are currently stil			oserui example for other similar areas
P Riparian, felled, no	HH3/	Rhododendron rare	Remove conifers and control regeneration
replant	PB3/	Conifer regen abundant in	Control rhododendron.
27	GS4	places	Allow native trees to grow where naturall
Naka			regenerating.
Note:			Control grazing (sheep)G & DEVELOPMENTS
0.111	HH3_E	Grazing and erosion of peat	Control grazing (Sheep); & DEVELOR
Q Unplanted, HH3	11115_		2 Liditary of a control of the state of the

2 3 FEB 2023 0 06 0

Figure 7 Management Scenarios for Area B (See Table 2)

Area C

This southern part of the site also lies on the lower flanks of the mountain Doire an Chláir. The upper slopes of Area C are steep but the slope varies between moderate and gentle before reaching Loch an Doire an Chláir (Derryclare Lough). Between the Derryclare property and Derryclare Lough lies Derryclare Wood National Nature Reserve. Derryclare Wood is an Atlantic oak woodland with woodland cover since at least the 1830's. The geology of Derryclare Wood is complex with both Streamstown Schist formation and Lakes Marble Formation; the former supporting a more acidic vegetation community and the latter more calcareous. The Lake Marble Formation contrasts with the prevailing geology of the Derryclare propery which is Streamstown Schist formation. Soils within Area C are dominated by peaty podzols along with with peats and acid brown earths. There is an extensive network of rivers draining from Derryclare mountain, through Derryclare Property and into Derryclare Lough.

Current habitats

Overview

Existing habitats have been modified by afforestation. Modification includes planted conifers, drains, furrows and ridges/mounds, old stems, old stumps and windblow. Most of this Area is dominated by low yielding conifers and extensive areas of dead stand. The upper slopes are steep and unplanted. The lower slopes (mainly below forestry access track) include some second rotation plantation. Part of the site was burned and was not replanted. There is a small area of Annex I quality blanket bog. Current habitats are shown in Figure 8 and described below.

Habitat descriptions

Undeveloped Conifer plantation on blanket bog (Undev_PB3) and with flush (Undev_PB3_flush). This is a gently sloping area that was planted with conifers in the 1960's. The conifers have failed (YC 6 or less) and much of the tree cover is now standing dead. While there is no canopy the effects of afforestation persists with deep drains, furrows and ridges. However a peatland community persists with abundant *Molinia caerulea* along with *Calluna vulgaris*, *Erica tetralix*, *Potentilla erecta* and Sphagnum mosses. Flushing or lateral water movement is indicated with the presence of *Phragmites australis* in one area. Rhododendron is frequent and is regenerating. Deer browsing, tracks and droppings were present.

Conifer plantation (WD4). First and second rotation conifer plantation mainly on gentle slope with low or medium and high yield class (YC6-12-16) which has been planted on blanket bog and on blanket bog wet heath mosaic. There are some rocky knolls and bare rock, areas of deep peat and areas of shallower peat. Drains, furrows and ridges are present throughout. In places the canopy is closed and the peatland vegetation is absent or very poor, however there is generally variation in canopy cover reflecting a variety of factors such as peat depth, water table depth and presence of rocky knolls. Part of this habitat lies directly adjacent to Derryclare Nature Reserve and another part surrounds an area of Annex (quality blanket bog. This habitat includes windblow which is dense and extensive in places. Rhododendron is occasional to rare. There is considerable variation within this habitat type and it is described in four sections:

- Adjacent to Derryclare Wood and extending upslope (east side of river running through compt. 51217G). This area is dominated by second rotation conifers planted in the 1990's. Some birch, Japanese Jacch, ash and oak were also planted. The conifers are c. 5m and the canopy has not developed, however, in places growth is dense and there is not much light to the field layer. The field layer is generally poor under low light. Pine needles dominate along with occasional shade tolerant species such as Hedera helix, Blechnum spicant and Dryopteris dilatata. "Dry" mosses and less so sphagnum mosses are present. In wetter areas there is Juncus effusus and Willow (Salix spp.). Where light allows Molinia caerulea is present and there is some regeneration of native trees (birch, rowan, willow). There are areas with abundant sphagnum mosses including sphagnum hummocks, this is on the gently sloping ground above the road and not in an area of deeper peat below the road and directly adjacent to Derryclare Wood (where it might be expected).
 - To the west side of the river running through compt. 51217G the conifer plantation is on deep peat. Some of trees are undeveloped or dead and lichen covered and the field layer is dominated by Molinia caerulea with abundant Spaghnum mosses in places. Wet areas of pooling water are present and may be a result of flows from constructed drains rather than naturally occurring. In some places, despite a similar peat depth, the canopy is closed and the field layer is dominated by pine needles. Up slope where the peat depth is more variable there is an extensive area of windblow with many fallen trees and tree root plates. This area has a very mixed plant community reflecting drier habitats created by old stumps and roots and by fallen trees and wet habitats in pools and drains created by the plantation and by fallen trees.
 - At the southern upper edge of Area C the WD4 habitat lies on varying peat depth. It first rotation low yield class plantation. The trees are well grown in places, however there are areas of undev (higher slopes) and extensive areas of wind blow.
 - At the southern lower edge of Area C the WD4 habitat lies on shallower peat soils with rocky knolls. A small part of the WD4 is on deep peat (adjacent to Annex I quality PB3).

Undeveloped conifers on wet heath, blanket bog or mosaic or both (Undev_HH3_PB3/PB3_undev). A large part of Area C is poor conifer cover (regen after burning) of undeveloped conifers on blanket bog or wet heath. While the peatland habitats have been modified by drains, furrows and mounds and there are dead stems (standing and fallen) the peatland community persists. The grass *Molinia caerulea* dominates along with a number of other species typical of blanket bog and wet heath. This habitat is extensive and varied with pockets of deeper peat and areas of shallower peat and surface rock over ground that is generally undulating with some gentle and moderate slopes. There is an extensive area of blanket bog with undeveloped conifers (likely natural generation after burning). This is an area of recovering blanket bog.

Blanket bog (PB3). An area of deep peat which lies within a naturally occurring "bowl" between rock "ridges" and supports Annex I quality blanket bog. Although drain lines are present and there is some forestry along its edge, the bog is quaking. While modified and with some negative indicator species, the blanket bog has species typical of the Annex I habitat types: Active blanket bog (7130) along with Depressions on peat substrates of the Rhynchosporion (7150).

Wet grassland and Wet heath (GS4_HH3). The floor of the stream valley is dominated by rushes (Juncus spp) along with *Molinia caerulea* and abundant conifer regeneration. Wet heath is present where the ground is sloping (north side of stream).

Scrub (WS1) Small pocket of scrub next to Derryclare Wood Nature Reserve.

Target Habitats

Target habitats have been considered based on plant communities present, peat depth, forest cover and history, adjacent habitats and critically the hydrological assessment.

While the habitats in Area C have been modified by afforestation there are large areas with undeveloped or low yielding conifers which have retained a wet heath and blanket bog community; albeit degraded. In some areas afforestation has been more successful and the field layer has been modified, however this is generally in a mosaic with other areas of poor or little conifer cover and "better" habitat. There is considerable potential for restoration to wet heath and blanket bog habitat. A priority for restoration in this area is the small area of Annex I blanket bog habitat. There is also potential for native woodland creation which will benefit Derryclare Nature Reserve and provide an more extensive and connected area of native woodland cover.

The target habitats for this Area are shown in Figure 9. In terms of achieving these targets a number of "Management Scenarios" are described where the attributes of forest cover, history, yield class and slope have been considered. Areas with similar attributes were grouped under different scenarios (Figure 10). This exercise was carried out in order to assess the great variety of attributes over a large site. Pressures within each scenario area are described and proposed actions to achieve target habitats described (Table 1).

Scenario	Target	Pressures	Actions
A 1st rotation, gentle slope, deadstand on PB3	PB3	Rhododendron frequent Conifer (SS) regeneration occasional. Grazing (Deer)	Block drains Remove deadstand Remove and control conifer and rhododendron.
Note: Difficult terrain.	Flush with	Phragmites australis present.	
AA 1st rotation, gentle slope, low YC on PB3_HH3	PB3	Rhododendron frequent to occasional Conifer (SS) regeneration frequent. Windblow (many and scattered) Grazing (Deer)	Block drains Remove conifers Remove and control conifer and rhododendron.
Note: Large pockets of	windblow	creating very difficult terrain.	Difficult access.
B 1st rotation, gentle slopes, medium, low YC and dead stand on PB3.	PB3	Rhododendron rare to occasional Conifer regeneration rare Windblow (scattered)	Block drains Remove conifers Remove and control conifer and rhododendron.
Note: Deep peat with a closed canopy.	abundant	Spaghnum mosses in places. Tr	ees have largely failed, though some areas o
C 1st rotation, gentle slopes.	HH3 HH3	Rhododendron rare to frequent	Block drains Remove conifers

Scenario	rio Target Pressures		Actions	
medium, low, med, high YC HH3/PB3, rock likely.	PB3 WN1_ HH3	Conifer regeneration Conifer regen frequent Windblow (scattered)	Remove and control conifer and rhododendron. Where WNI is target, fell and replant with natives; retain some conifers as future veterans and for squirrels.	
Note:				
F 2nd rotation, gentle slope, med YC on PB3	PB3	Rhododendron rare Conifer regeneration present	Remove conifers Block drains. Control rhododendron regeneration. Control conifer natural regeneration.	
2 - 12 : [10] [10] [10] [10] [10] [10] [10] [10]		plantation. This lies next to De	rryclare Wood. Restore to PB3 is possible,	
give depth of peat (3m G 2nd rotation, moderate/gentle slope with med YC on HH3 Note:	HH3_ WN1 WN1	Rhododendron rare to frequent	Remove conifers Control rhododendron regeneration. Control conifer natural regeneration Control grazing (deer)	
I 2nd rotation, moderate/gentle slope, med YC on PB3_HH3	PB3_ HH3 mosaic	HH3 frequent Block drains.		
Note: Similar to F.			The state of the s	
L Felled <12 yrs, no replant, gentle slope, recovering PB3.	PB3_ Undev	Rhododendron occasional Bracken Deer, sheep, cattle Conifer regeneration	Block drains Remove as much brash and felled stems as possible. Remove and control rhododendron regeneration thereof.	
Note:				
O Felled/burned, no replant, gentle/moderate slope, recovering HH3	ннз	Rhododendron abundant to frequent Windblow single trees Bracken Conifer undev and regen	Remove and control conifers and rhododendron Control bracken Block drains	
Note:				
Q and E Unplanted HH3 and small areas of 1 st rotation; all on steep slope.	ннз	Rhododendron rare Bracken	Remove and control conifers and rhododendron Control bracken	
Note: Steepness of slop	pe and rem	note access.		
R Unplanted PB3	PB3	Rhododendron rare Poaching and browsing (sheep, deer) Conifer regen rare	Remove conifers from along edge of "basin" and from nearby pocket of deep peat. Block drains Remove stock Remove conifer and rhodo regen.	

SALMEY COUNTY COUNCIL

Scenario	Target	Pressures	Actions	
S Unplanted Scrub	Scrub	Rhododendron Conifer regen	Remove and control conifers and rhododendron Leave to natural regeneration and development	
Note:				
U Felled riparian wet grassland and heath	112	Prolific conifer regeneration	Remove conifers Plant with native riparian species to manage likely on going colonisation by conifers.	
Note:	3006	S 3 LEE 505		

Figure 10. Management Scenarios for Area C (See Table 3)

Area D

This area covers a large peninsula which extends into Derryclare Lough and the land which separates Derryclare Lough and Lough Inagh.

Current habitats

Existing habitats are conifer plantation (WD4) and wet heath with immature native woodland (HH3_WS2) (Figure 11).

Figure 11. Current habitats in Area D

Target Habitats

Target habitats are wet heath with native woodland (oak, birch, holly, scots pine), blanket bog and wet heath. Habitats reflect peat depth and topography. Native woodland also provides for expansion of Derryclare Wood Nature Reserve. See Figure 12.

Table Technology habitats, pressures and notes for various "scenarios" in Area D (See Figures 12&13).

Actions

Scenario	Target	Pressures	Actions
B 2nd rotation, gentle slope med YC on PB3	PB3	Rhododendron rare	Remove conifers Block drains. Control rhododendron regeneration. Control conifer natural regeneration.
Note:			
F 2nd rotation, gentle slope, high YC on PB3	PB3	Rhododendron frequent	Remove conifers Block drains. Control rhododendron regeneration. Control conifer natural regeneration.
Note: Dense conifer gr	owth on p	art of area; otherwise sparse.	
G Gentle slope,	WN1_ HH3	Rhododendron rare Conifer regeneration	Remove conifers Control rhododendron regeneration. Control conifer natural regeneration
abundant regen or replant, rock, knoll, HH3			Control conner natural regeneration
replant, rock, knoll, HH3	ıys no repl	ant, however conifer cover is h	igh and seems unlikely to be natural

Figure 13. Management Scenarios for Area D (See table 4)

Date		Compt & sub no	
Photo No./			
Indicative soil type			
Depth			
COUNTY COUNTY			
Topography AVMINO			
Watercourses EZ			
Watercourses E Z Watercourses E Z Faunana & DEVEUR			
Habitat			
(Fossitt)			
Habitat status H-			
M-L			
(Current)			
Characterising spp			
Natural Features			
e.g. hummocks, flush, p	ools		
GPS location			
No. difference front and			
Modification features			
Imma ata /anassuras			
Impacts/pressures			
Target Habitat			

Windblow:

- Many many trees down in pockets (large local effect; root plates, fallen dead)
- Scattered single trees down in many places
- · Single- the odd tree noted

Yield class (YC)

- YC 10 or less is considered to be LOW
- YC of 12-14 is considered to be MEDIUM
- YC of 16-20 is considered to be HIGH

Undev - is undeveloped plantation (YC of 4 or less)

Dead stand - is standing dead plantation

Rhododendron and cover and regeneration and conifer regeneration

Follows DAFOR descriptions below (BSBI.ie).

PRESENT used where Rhododendron is considered likely to be present but not sufficiently walked to rate following DAFOR as below:

D for Dominant: In practice you will rarely, if ever use this. To score **D**, a species would have to be the most common plant by far, in well over three quarters of the square. It is possible that in a square that is entirely conifer plantation, that Sitka spruce Picea sitchensis might score **D**; or in a square that is almost all occupied by highly improved grassland, perennial rye-grass Lolium perenne might sometimes score **D**, but even these two scenarios are unlikely most of the time. If you are not sure if something should score **D** or **A**, give it **A**.

A for Abundant: Only use A if the plant was really very common in many parts of the square. For most species this would mean that there were thousands of individual plants present. In most squares, few species will score as highly as A and in quite a few squares there will be no species that score that highly. If you are not sure if something should score A or F, give it F.

F for Frequent: Use **F** if you found the plant in several places in the square and there was usually more than just **A** few individuals in each of these places. You could also use **F** if the plant was only present in one part of the square but was very common in that part, with many individuals and covered **A** substantial area (e.g. between one eight and one quarter of the area of the whole square). If you are not sure if something should score **F** or **O**, give it **O**.

O for Occasional: Use O for species that occur in several places in the square, but whose populations are usually not very big. You would also use O for species that are very common in one bit of habitat within the square that occupied just a small area (e.g less than one eight of the area of the whole square). You will use O for many species in most squares. If you are not sure if something should score O or R, give it R.

R for Rare: Use R for any species that occur as a small number of individuals in the square this small number of individuals may be located in one place in the square, or scattered over several different locations within security the square. In many squares R is likely to be the score that most species get. If you are not sure if something should score O or R, give it R.

For those of you who are used to using the DAFOR scale, please stick to the basic 5 scores only and avoid entries like O/F (occasional to frequent) and particularly please avoid using the prefix the

2 3 FEB 2023 0 0 6 0

GALWAY COUNTY COUNCIL

Relevé Data

COUNTY COUNCIL

Relevé 1	Grid reference: E483099; N750634	Date: 27/10/2022
Species	Common Name	% Cover
Vascular Plants		
Shrubs/Dwarf Shrubs		
Calluna vulgaris	Ling heather	80
Erica tetralix	Cross-leaved Heath	2
Herbs		THE REAL PROPERTY.
Molinia caerulea	Purple Moor-grass	10
Potentilla erecta	Tormentil	2
Non-vascular Plants		
Calliergonella cuspidata		5
Sphagnum capillifolium		5
Bare Ground		
Exposed rock		3
Poached ground	5	
Peat Depth		
0.2-0.4m		
Habitat Classification		Wet Heath (HH3)

Area of wet heath and lowland blanket bog with undeveloped woodland in the wider area.

Plate 1-1 Releve 1 E0483099; N0750634

Relevé 2	Grid reference: E483096; N750595	Date: 27/10/2022
Species	Common Name	% Cover
Vascular Plants		
Trees		
Pinus contorta	Lodgepole pine	i
Shrubs/Dwarf Shrubs		
Calluna vulgaris	Ling heather	65
Erica tetralix	Cross-leaved Heath	2
Herbs		
Molinia caerulea	Purple Moor-grass	30
Potentilla erecta	Tormentil	+
Pedicularis sylvatica	Lousewort	1
Non-vascular Plants		
Sphagnum divinum/medium		15
Sphagnum capillifolium	15	
Bare Ground		3
Peat Depth		lm
Habitat Classification		Lowland Blanket Bog (PB3)

Area of wet heath and lowland blanket bog with undeveloped woodland in the wider area.

Plate 1-2 Releve2 E0483096; N0750595

Relevé 3	Grid reference: E483189; N750684	Date: 27/10/2022
Species	Common Name	% Cover
Vascular Plants		
Shrubs/Dwarf Shrubs		
Calluna vulgaris	Ling heather	85
Erica tetralix	Cross-leaved Heath	4
Herbs		
Molinia caerulea	Purple Moor-grass	15
Potentilla erecta	Tormentil	3
Non-vascular Plants		
Sphagnum divinum/medium		10
Campylopus introflexus		3
Bare Ground		3
Peat Depth		0.5-0.9m
Habitat Classification		Wet Heath (HH3)/Lowland Blanker Bog (PB3)

Historically planted area of wet heath and lowland blanket bog with drains and old tree stumps evident.

Relevé 4	Grid reference: E483258; N751020	Date: 27/10/2022
Species	Common Name	% Cover
Vascular Plants		
Shrubs/Dwarf Shrubs		
Calluna vulgaris	Ling heather	45
Erica tetralix	Cross-leaved Heath	5
Herbs		
Molinia pupurea	Purple Moor-grass	40
Potentilla erecta	Tormentil	1
Pedicularis sylvatica	Lousewort	1
Blechnum spicant	Hard Fern	2
Non-vascular Plants		
Polytrichum commune		+
Campylopus introflexus		1
Bare Ground		7
Peat Depth		0.1-0.3m
Habitat Classification		Wet Heath (HH3)

Upper gradient of Derryclare Mountain with evidence of historically planted trees

S 3 LEE SOS3 0 0 0 0

6 THINING & DEVELOPMENT SECTION

Relevé 5	Grid reference: E483272; N751043	Date: 27/10/2022	
Species	Common Name	% Cover	
Vascular Plants			
Shrubs/Dwarf Shrubs	THE PERSON		
Calluna vulgaris	Ling heather	80	
Erica tetralix	Cross-leaved Heath	3	
Herbs			
Molinia caerulea	Purple Moor-grass	25	
Potentilla erecta	Tormentil	2	
Pedicularis sylvatica	Lousewort	1	
Blechnum spicant	Hard Fern	2	
Non-vascular Plants			
Rhytidiadelphus loreus		8	
Sphagnum divinum/medium		10	
Cladonia portentosa		+	
Bare Ground		3	
Peat Depth	E THE PERSON NAMED AND ADDRESS OF	0.3-0.6m	
Habitat Classification		Wet Heath (HH3)	

Upper gradient of Derryclare Mountain with evidence of historically planted trees

Relevé 6	Grid reference: E482455 N749133	Date: 15/11/2022	
Species	Common Name	% Cover	
Vascular Plants			
Shrubs/Dwarf Shrubs			
Calluna vulgaris	Ling heather	5	
Erica tetralix	Cross-leaved Heath	3	
Myrica gale	Bog Myrtle	5	
Herbs			
Molinia caerulea	Purple Moor-grass	25	
Schoenus nigricans	Black Bog rush	Sinte T	
Rhyncospora alba	White-beak Sedge	50	
Eriophorum vaginatum	Hare's-tail Cottongrass	5	
Eriophorum angustifolium	Common Cottongrass	10	
Narthecium ossifragum	1		
Non-vascular Plants			
Sphagnum cuspidatum		25	
Sphagnum divinum/medium		5	
Cladonia portentosa		2	
Pools/Bare Ground		10	
Peat Depth		>1m	
Habitat Classification		Lowland Blanket Bog (PB3)	

Area of intact and quaking blanket bog with regular pools and high coverage of Rhycospora

S 3 LEB SOS3 0 0 8 0

Relevê 7	Grid reference: E482344 N748836	06 Date: 15/11/2022		
Species	Common Name	% Cover		
Vascular Plants				
Shrubs/Dwarf Shrubs				
Calluna vulgaris	Ling heather	5		
Erica tetralix	Cross-leaved Heath	3		
Myrica gale	Bog Myrtle	5		
Herbs				
Molinia caerulea	Purple Moor-grass	1		
Schoenus nigricans	Black Bog rush			
Rhyncospora alba	White-beak Sedge	50		
Eriophorum vaginatum	Hare's-tail Cottongrass	8		
Eriophorum angustifolium	Common Cottongrass	10		
Narthecium ossifragum	Bog Asphodel	1		
Non-vascular Plants				
Sphagnum cuspidatum		8		
Sphagnum papillosum		5		
Pleurozia purpurea		1		
Campylopus introflexus		5		
Cladonia portentosa		8		
Pools/Bare Ground		5		
Peat Depth		>lm		
Habitat Classification		Lowland Blanket Bog (PB3)		

Area comprises a mosaic of Wet Heath (HH3) with shallow peat and exposed rock and Lowland Blanket Bog

(PB3) with deeper peats

PLANNING & DEVELOPMENT SECTION

2.2 FEB. 2225

2 3 FEB 2023 0 0 6 0

Relevê 8 Grid reference: E482514 N74916		Date: 15/11/2022		
Species	Common Name	% Cover		
Vascular Plants				
Shrubs/Dwarf Shrubs				
Calluna vulgaris	Ling heather	10		
Erica tetralix	Cross-leaved Heath	5		
Herbs				
Molinia caerulea	Purple Moor-grass	2		
Schoenus nigricans	Black Bog rush	5		
Rhyncospora alba	White-beak Sedge	10, 28 707		
Eriophorum vaginatum	Hare's-tail Cottongrass	5 5		
Eriophorum angustifolium	Common Cottongrass	5		
Narthecium ossifragum	Bog Asphodel	5		
Non-vascular Plants				
Campylopus introflexus		25		
Sphagnum capillifolium		25		
Cladonia portentosa		5		
Pools/Bare Ground		30		
Peat Depth	inneres British	>lm		
Habitat Classification		Lowland Blanket Bog (PB3)		

Area of intact and quaking blanket bog with regular pools and high coverage of Rhycospora

S 3 FEB 2023 0 0 6 0

PANNING & DEVELOPMENT SECTION

Market 197

CONSULTANTS IN ENGINEERING, ENVIRONMENTAL SCIENCE & PLANNING

GEOTECHNICAL & PEAT STABILITY ASSESSMENT REPORT

DERRYCLARE PEATLAND REHABILITATION

Prepared for: MKO Ltd

Date: February 2023

Unit 6, Bagenalstown Industrial Park, Bagenalstown, Co. Carlow, R21 XW81, Ireland T: +353 59 9723800 E: info@ftco.ie

CORK | DUBLIN | CARLOW

www.fehilytimoney.ie

PLANNING & DEVELOPMENT SECTION

WONDERSTRESS OF O O O O

P22-263

User is responsible for Checking the Revision Status of this Document

Rev. No.	Description of Changes	Prepared by:	Checked by:	Approved by:	Date:
0	Draft for Comment	ATC	IH	TC	07/02/2023
1	Final for Issue	ATC	IH	TC	09/02/2023

Client: MKO Ltd

Keywords: Geotechnical, Peat Stability, Peat Failure, Risk Assessment, Peatland Rehabilitation

Abstract: Fehily Timoney and Company (FT) were engaged by McCarthy Keville O'Sullivan (MKO) to undertake a geotechnical assessment of the proposed peatland rehabilitation site at Derryclare

with respect to peat stability. As part of the geotechnical assessment of the proposed development, FT completed walkover surveys at the site. The findings of the geotechnical and peat stability assessment showed that the site has an acceptable margin of safety and is suitable

for tree felling and resulting peatland rehabilitation.

TABLE OF CONTENTS

IADL	OF CONTENTS	the state of the s
1. NO	N-TECHNICAL SUMMARY	1
2. INT	RODUCTION	1
2.1	Fehily Timoney and Company	1
2.2	Project Description	1
2.3	Peatland Restoration	1
2.4	Peat Stability Assessment Methodology	2
2.5	Peat Failure Definition	5
2.6	Main Approaches to Assessing Peat Stability	5
2.7	Peat Stability Assessment – Deterministic Approach	5
2.8	Applicability of the Factor of Safety (Deterministic) Approach for Peat	Slopes6
2.9	Assessment of Intense Rainfall and Extreme Dry Events on the Peat Slo	ope7
3. DES	SK STUDY	8
3.1	Quaternary Geology	8
3.2	Bedrock Geology	8
3.3	Structural Geology	8
3.4	Economic Geology	9
3.5	Karst	9
3.6	Geological Heritage	9
3.7	Topography	9
3.8	Landslide Susceptibility	9
3.9	Previous Failures	10
3.10	Previous Investigations	10
4. FIN	DINGS OF SITE RECONNAISSANCE	15
4.1	Site Reconnaissance	15
4.2	Findings of Site Reconnaissance	15
5. PEA	AT DEPTHS, STRENGTH & SLOPE AT RHB AND NEW ACCESS ROAD LO	
5.1	Peat Depth	PLANNING & DEVELOPMENTS SECTION
5.2	Peat Strength	TOPMENS SEA
5.3	Slope Angle	2 3 FFD 2000 18 Clien
5.4	Peat Depth	CALWAY COUNTY COUNCIL
P22-263	www.fehii	Stimoney ie COUNTY COUNCIL

6. PE	AT STABILITY ASSESSMENT	21
6.1	Methodology for Peat Stability Assessment	2
6.2	Analysis to Determine Factor of Safety (Deterministic Approach)	2
NTY GOUNCIL	Results of Analysis	2
	Results of Analysis 6.3.47 Undrained Analysis for the Peat	2
- 0 0 1707	7.07.	
7. PE	EAT STABILITY RIS CASSESSMENT	3:
3STN3MAB JANSK	n Sum Mary of Risk Assessment Results	3
8. FC	THE STABILITY RIS CASSESSMENT	3
8.1	Access Roads	
9. W	VORKS MONITORING AND POST WORKS MONITORING	3
9.1	Works Supervision and Monitoring	3
9.1 9.2	Works Supervision and Monitoring	
		3
9.2	Movement Monitoring Posts	3
9.2 9.3	Movement Monitoring Posts Post Works Monitoring	3
9.2 9.3 10.	Movement Monitoring Posts Post Works Monitoring SUMMARY AND RECOMMENDATIONS	3

LIST OF APPENDICES

Appendix A:	Photos from Site Walkover
Appendix B:	Peat Stability Risk Register

Appendix C: Calculated FoS for Peat Slopes on Site

Appendix D: Methodology for Peat Stability Risk Assessment

LIST OF FIGURES

Figure 2-1:	General Site Layout and Peat Probe Distribution	3
Figure 2-2:	Methodology for Peat Stability Assessment	
Figure 2-3:	Peat Slope Showing Balance of Forces to Maintain Stability	Ε
Figure 3-1:	Quaternary Sediments	12
Figure 3-2:	Bedrock Geology	13
Figure 3-3:	Landslide Susceptibility	14
Figure 4-1:	Heat Map Showing Peat Depths	17
Figure 5-1:	Peak Undrained Shear Strength (cu) Profile for Peat with Depth	20
Figure 6-1:	Factor of Safety Plan - Short Term Condition (Undrained)	27
Figure 6-2:	Factor of Safety Plan - Long Term Condition (Drained)	31

LIST OF TABLES

Table 3-1:	RPS Peat Water Level Data	10
Table 5-1:	Peat Depth & Slope Angle at RHB, Access Roads and Points of Interest	19
Table 6-1:	List of Effective Cohesion and Friction Angle Values for Peat	22
Table 6-2:	Factor of Safety Limits for Slopes	23
Table 6-3:	Factor of Safety Results (Undrained Condition)	25
Table 6-4:		
Table 6-5:	Comparison of Factor of Safety Results at 100% and 50% Water Levels within the Peat	
Table 7-1:	Risk Rating Legend	32
Table 7-2:	Summary of Peat Stability Risk Register	33

NON-TECHNICAL SUMMARY

Fehily Timoney and Company (FT) was engaged by McCarthy Keville O'Sullivan (MKO) Ltd (on behalf of Coillte) to undertake a geotechnical and peat stability assessment of the proposed peatland rehabilitation at Derryclare, located in northwest Co. Galway.

A Walkoyer including intrusive peat depth probing, desk study, stability analysis and risk assessment was carried out to assess the susceptibility of the site to peat failure following the principles in Peat Landslide Hazard and Risk Assessments: Best Practice Guide for Proposed Electricity Generation Developments (PLHRAG, Scottish Government, 2017)

The findings, which involved a stability analysis of approximately 73 locations, show that the site involved a stability analysis of approximately 73 locations, show that the site involved a stability analysis of approximately 73 locations, show that the site involved in peat lands to ensure that all stability analysis of approximately 73 locations, show that the site involved in peat lands to ensure that all stability analysis of approximately 73 locations, show that the site involved in peat lands to ensure that all stability analysis of approximately 73 locations, show that the site involved involved in peat lands to ensure that all stability analysis of approximately 73 locations, show that the site involved involved involved in peat lands to ensure that all stability analysis of approximately 73 locations, show that the site involved involve

The proposed rehabilitation works will involve felling of existing Coillte forestry within designated Restoration Harvest Blocks, removal of forestry drains and construction of new access roads to accommodate the felling works. The existing network of access roads will be used for the removal of felled trees off site.

In general, the sites' topography slopes down towards the east with elevations ranging from 20 to 180m AOD Slopes generally increase in steepness towards the west, where the site adjoins the upland areas of Bencorr (summit of 690m AOD) and Derryclare. Slopes flatten noticeably towards the east; however, the terrain is still punctuated by localised areas of elevated ground giving the site an overall undulating or hummocky appearance. The land use within the site comprises commercial forestry.

Slope inclinations across the Restoration Harvest Blocks and along the new and existing access roads range from 1 to 32 degrees. The variable and sometimes steep topography on site highlights the potential risk of peat instability. Ground conditions comprise a mantle of blanket peat overlying glacial till, which in turn overlies bedrock.

130 no. peat depth probes were taken across the site (86 no. completed by FT between November and December 2022 and 44 no. completed by RPS between July and August 2021). Peat depths recorded across the site ranged from 0.0 to 4.7m with an average depth of 1.1m. Approximately 63% of probe locations recorded peat depths of less than 1.0m and 86% of less than 2.0m. A number of localised readings were recorded where peat depths were between 2.0 and 4.7m. Base of peat was typically recorded as sand and gravel (till) or bedrock.

The purpose of the stability analysis was to determine the stability i.e. Factor of Safety (FoS), of the peat slopes. The FoS provides a direct measure of the degree of stability of a peat slope. A FoS of less than 1.0 indicates that a slope is unstable; a FoS of greater than 1.0 indicates a stable slope. An acceptable FoS for slopes is generally taken as a minimum of 1.3. The stability analysis for this project, which analysed the Restoration Harvest Blocks and access roads (new and existing), resulted in FoS above the minimum acceptable value of 1.3 for both the undrained and drained condition, indicating that the site has a satisfactory margin of safety.

The risk assessment uses the results of the stability analysis in combination with qualitative factors, which cannot be reasonably included in a stability calculation but nevertheless may affect the occurrence of peat instability, to assess the risk of peat failure at the site. The results of the risk assessment are given in Appendix

In summary, the site has an acceptable margin of safety, is considered to be at low risk of peat failure and is suitable for the proposed rehabilitation works.

REPORT:

2. INTRODUCTION

2.1 Fehily Timoney and Company

Fehily Timoney and Company (FT) is an Irish engineering, environmental science and planning consultancy with offices in Cork, Dublin and Carlow. The practice was established in 1990 and currently has about 90 members of staff, including engineers, scientists, planners and technical support staff. FT deliver projects in Ireland and internationally in our core competency areas of Waste Management, Environment and Energy, Civils Infrastructure, Planning and GIS and Data Management.

FT have been involved in over 100 wind farm developments in both Ireland and the UK at various stages of development i.e., preliminary feasibility, planning, design, construction, and operational stage and have established themselves as one of the leading engineering consultancies in peat stability assessment, geohazard mapping in peat land areas, investigation of peat failures and site assessment of peat.

This Report was written by Aaron Clarke (FT Principal Geologist, EurGeol, PGeo, MSc in Applied Geotechnics). Aaron is a Principal Geologist with Fehily Timoney and has over 18 years' experience within the geoscience field and over 10 years' experience within ground engineering.

2.2 Project Description

Fehily Timoney and Company (FT) were commissioned by MKO Ltd. (on behalf of Coillte) to undertake a geotechnical and peat stability assessment for a proposed peatland restoration at Derryclare, Co. Galway. The aim of the restoration project is to re-establish bogland habitat and native scrub woodland across 20 no. proposed Restoration Harvest Blocks (RHBs) over an area of approximately 350 hectares.

The rehabilitation works will comprise felling of existing Coillte forestry within the proposed RHBs, removal of forestry drains and construction of 1.58km of new access roads to accommodate the felling works. The existing network of access roads (total approximate length of 8.3km) will be used for the removal of felled trees off site.

2.3 Peatland Restoration

As part of this assessment, FT took into consideration the guidance set out in *Best practice in raised bogs* restoration in *Ireland (NPWS, 2017)*. The main restoration methods to be considered within this assessment are:

- Drain blocking; and
- Removal of trees/scrub.

For drain blocking, the most common restoration measure undertaken on bogs in Ireland is blocking of manmade drains. The purpose of this measure is to raise the water table in the drain, and in adjacent areas in order to reduce run-off rates, carbon losses and the potential for subsidence.

Removal of forestry is a proven restoration measure, and has been used effectively by organisations such as Coillte at a number of bogs in Ireland. Removal of forestry is typically combined with other restoration measures such as drain blocking. When both are applied to a suitable area they can be effective in raising water levels in the peat and encouraging peatland development.

23 FEB 2023 0 06 0

P22-263

www.fehilytimoney.ie

Peat Stability Assessment Methodology

FT undertook the assessment following the principles in Peat Landslide Hazard and Risk Assessments: Best Practice Guide for Proposed Electricity Generation Developments (2nd edition, PLHRAG, 2017). The Peat Landslide Hazard and Risk Assessment Guide (PLHRAG) is used in this report as it provides best practice methods to identify, mitigate and manage peat slide hazards and associated risks in respect of consent applications for TIONNO Destricity generation projects.

The aforemel fromed best practice guide was produced following peat failures in the Shetland Islands, Scotland 0 9 0 oin September 2009 but more pertinently following the peat failure in October 2003, during the construction of a County Galway, Ireland.

This peat stability assessment has been undertaken taking into account peat railures that have been undertaken taking into account peat railures that have been incorporated into this assessment. The Meenbog failure occurred during the construction of a section of floating road on a wind farm on sidelong ground in an area of weak peat. It is important that the existing site drainage is maintained during felling operations to avoid a similar failure to that on Shass Mountain, which occurred following heavy rainfall, and this is referenced in the Risk Assessments for the proposed access roads.

A preliminary desk top study undertaken by FT to determine potential geohazards associated with the proposed rehabilitation works, prior to the site reconnaissance by engineering geologists/geotechnical engineers from FT. The extent and depth of ground investigation and peat stability analysis by FT have been undertaken in accordance with guidance within Eurocode 7 and PLHRAG (2nd Edition, 2017) to investigate peat slopes that have the potential to impact on the proposed development, as applicable. Sufficient peat depth data has been recorded during the site walkovers to enable the characterisation of the peat depth across the site as shown in Figure 2-1. The peat stability assessment is undertaken to identify peat slopes at risk from the proposed development, and to identify peat slopes that may pose a risk to the proposed development.

The geotechnical and peat stability assessment at the site included the following activities:

- (1) Desk study, involving the review of publicly available soils and geology maps, records of historical peat failures, aerial photography.
- (2) Site reconnaissance including shear strength and peat depth measurements were undertaken.
- (3) Peat stability assessment of the peat slopes on site using a deterministic and qualitative approach.
- Peat contour depth plan compiled based on the peat depth probes carried out across the site by FT (2022) and RPS (2021).
- (5) Factor of safety plan compiled for the short-term critical condition (undrained) for approximately 73 no. FoS points analysed within the proposed RHBs and along the proposed access roads on site (a total of 86 peat probe locations were visited during FT's site walkover, however 13 no. locations were recorded as having no peat).
- (6) A buffer zone plan identifies areas with an elevated or higher risk where mitigation/control measures will need to be implemented during the site's rehabilitation works to minimise the potential risks, as well as areas where rehabilitation works should be avoided.
- (7) A peat stability risk register was compiled to assess the potential risks at the proposed RHBs and access track locations and determine adequate mitigation/control measures for each location to minimise the potential risks and ensure they are kept within an acceptable range, where necessary.

A flow diagram showing the general methodology for the peat stability assessment is shown in Figure 2-2. The methodology illustrates the optimisation of the site based on the findings from the site reconnaissance and stability analysis and subsequent feedback.

Figure 2-2: Methodology for Peat Stability Assessment

^{*}An FoS of between 1.0 and 1.3 does not mean that a failure will occur, but that the area requires attention. Mitigation measures can be provided for areas with an FoS of between 1.0 and 1.3 to reduce the risk of failure.

As for all construction projects, a detailed engineering construction design must be carried out by the appointed construction stage designer prior to any rehabilitation work commencing on site. This must take account of the consented project details and any conditions imposed by that consent. This must include a confirmatory peat stability assessment to account for any changes in the environment which may have occurred in the time leading up to the commencement of the rehabilitation works.

P22-263 www.fehilytimoney.le — Page 4 of 40

CLIENT: M

REPORT:

MKO LTD

PROJECT NAME: DERRYCLARE PEATLAND REHABILITATION

GEOTECHNICAL & PEAT STABILITY ASSESSMENT REPORT

2.5 Peat Failure Definition

Peat failure in this report refers to a significant mass movement of a body of peat that would have an adverse impact on the proposed site and the surrounding environment. Peat failure excludes localised movement of peat that would occur below an access road, creep movement or erosion type events.

The potential for peat failure at this site is examined with respect to rehabilitation works, construction of access roads and associated activity.

2.6 Main Approaches to Assessing Peat Stability

The main approaches for assessing peat stability for peat restoration projects include the following:

- (1) Geomorphological
- (2) Qualitative (judgement)
- (3) Index/Probabilistic (probability)
- (4) Deterministic (factor of safety)

Approaches (1) to (3) listed above are considered subjective and do not provide a definitive indication of stability; in addition, a high level of judgement/experience is required which makes it difficult to relate the findings to real conditions. FT apply a more objective approach, the deterministic approach (as discussed in Section 2.6).

As part of FT's deterministic approach, a qualitative risk assessment is also carried out taking into account qualitative factors, which cannot necessarily be quantified, such as the presence of mechanically cut peat, quaking peat, bog pools, sub peat water flow, slope characteristics and numerous other factors. The qualitative factors used in the risk assessment are compiled based on FT's experience of assessments and construction in peat land sites and peat failures throughout Ireland and the UK. FT have been involved with in excess of 100 wind farm developments across Ireland and the UK at various stages of development, from preliminary feasibility stage through planning and from scheme development at tender design and detailed design stage, through to the construction and operational stages. This approach follows the guidelines for geotechnical risk management as given in Clayton (2001), as referenced in the best practice for Peat Landslide Hazard and Risk Assessment Guide (PLHRAG, 2017), and takes into account the approach of MacCulloch (2005).

The risk assessment uses the results of the deterministic approach in combination with qualitative regions, which cannot be reasonably included in a stability calculation but nevertheless may affect the occurrence of peat instability to assess the risk of instability on a peat land site.

2.7 Peat Stability Assessment - Deterministic Approach

The peat stability assessment is carried out across a wide area of peatland to determine the stability block of slopes and to identify areas of peatland that are suitable for development; this allows the layout of infrastructure on a particular site to be optimised. The assessment provides a numerical value (factor of safety) of the stability of individual parcels of peatland. The findings of the assessment discriminate between areas of stable and unstable peat, and areas of marginal stability where restrictions may apply. This allows for the identification of the most suitable locations for access roads and infrastructure.

P22-263 www.fehilytimoney.ie — Page 5 of 40

A deterministic assessment requires geotechnical information and site characteristics which are obtained from desk study and site walkover, e.g. properties of peat/soil/rock, slope geometry, depth of peat, underlying strata, groundwater, etc. An adverse combination of the factors listed above could potentially result in instability. Using the information above, a factor of safety is calculated for the stability of individual parcels of peatland on a site (as discussed in Section 6.).

The factor of safety is a measure of the stability of a particular slope. For any slope, the degree of stability and the inherent of Person of the Person of depends on the balance of forces between the weight of the soil/peat working downslope (destabilising force) and the inherent strength of the peat/soil (shear resistance) to resist the downslope weight, see Figure 2-3.

Peat Slope Showing Balance of Forces to Maintain Stability

The factor of safety provides a direct measure of the degree of stability of a slope and is the ratio of the shear resistance over the downslope destabilising force. Provided the available shear resistance is greater than the downslope destabilising force then the factor of safety will be greater than 1.0 and the slope will remain stable. If the factor of safety is less than 1.0 the slope is unstable and liable to fail. The acceptable range for factor of safety is typically from 1.3 to 1.4.

2.8 Applicability of the Factor of Safety (Deterministic) Approach for Peat Slopes

The factor of safety approach is a standard engineering approach in assessing slopes which is applied to many engineering materials, such as peat, soil, rock, etc.

The factor of safety approach is included in the Peat Landslide Hazard and Risk Assessments Best Practice Guide for Proposed Electricity Generation Developments (PLHRAG, 2017); see Section 5.3.1 of the guide. This guide provides best practice methods to identify, mitigate and manage peat slide hazards and associated risks in respect of consent applications for electricity generation projects.

Furthermore, the best practice guide notes that the results from the factor of safety approach 'has provided the most informative results' with respect to analysing peat stability (Section 5.3.1 of the guide).

The factor of safety approach in this report includes undrained (short-term stability) and drained (long-term stability) analyses. The undrained condition is the critical condition for the development. The purpose of the drained analysis is to identify the relative susceptibility of rainfall-induced failures at the site.

CLIENT: MKO LTD

REPORT

PROJECT NAME: DERRYCLARE PEATLAND REHABILITATION

GEOTECHNICAL & PEAT STABILITY ASSESSMENT REPORT

Notwithstanding the above, the stability analysis used by FT in this report also includes qualitative factors to determine the potential for peat stability i.e. the analysis used does not solely rely on the factor of safety approach.

The deterministic analysis is considered an acceptable engineering design approach. This concurs with the best practice guide referenced above.

2.9 Assessment of Intense Rainfall and Extreme Dry Events on the Peat Slope

The deterministic approach carried out by FT examines intense rainfall and extreme dry events. The deterministic approach includes and undrained (short-term stability) and drained (long-term stability) analysis to assess the factor of safety for the peat slopes against a peat failure.

The drained loading condition applies in the long-term. This condition examines the effect of the change in groundwater level as a result of rainfall on the existing stability of the natural peat slopes. For the drained analysis the level of the water table above the failure surface is required to calculate the factor of safety for the peat slope.

In order to represent varying water levels within the peat slopes, a sensitivity analysis is carried out which assesses varying water level in the peat slopes i.e. water levels ranging from 0 to 100% of the peat depth is conducted, where 0% equates to the peat been completely dry and 100% equates to the peat being fully saturated.

By carrying out such a sensitivity analysis with varying water level in the peat slopes, the effects of intense rainfall and extreme dry events are considered and analysed. The results of which are presented in Section 6. of this report.

3. DESK STUDY

The main relevant sources of interest with respect to the site include:

Geological plans and Geological Survey of Ireland database

Ordnance survey plans

· Literature review of peat failures

0900

the Geological Survey of Ireland online dataset viewer (GSI, 2022) for the site were used to verify the soil and bedrock conditions.

238 W3Wd0 The Ordnance Survey plans were reviewed to determine if any notable features or areas of particular interest (from a geotechnical point of view) are present on the site.

The desk study also includes a review of both published literature and GSI online dataset viewer (GSI, 2022) on peat failures/landslides in the vicinity of the site.

3.1 Quaternary Geology

A review of the Geological Survey of Ireland online database and published documents from GSI was carried out.

GSI Quaternary Sediments mapping, presented in Figure 3-1, indicates the site is underlain by the following deposits:

- Alluvium Deposits (localised to one area along the western margins of the site)
- Blanket Peat (northernmost portion of the site)
- Till derived from metamorphic rocks (much of the southern portion of the site)
- Bedrock Outcrop or Subcrop (localised areas throughout the site and predominantly within the central/western portions of the site).

3.2 Bedrock Geology

GSI 100K Bedrock mapping, presented in Figure 3-2, indicates the site is underlain by the following formations:

- Rhyolitic Intrusive rocks (Ordovician)
- Streamstown Schist Formation Psammitic pelitic & semi-pelitic schists (Dalradian)
- Bennabeola Quartzite Formation Pale quartzites and grits (Dalradian)
- Lakes Marble Formation marbles, metavolcanics, schists and grits (Dalradian)
- Barnanoraun Schist Formation aluminous schists and hornblendic rocks (Dalradian)

3.3 Structural Geology

The structural geology (Figure 3-2) across the site comprises a series of NNW-SSE trending faults showing both apparent dextral and sinistral displacement. These faults are laterally continuous over distances of between 0.5 and 5.0km. A solitary NE-SW trending normal fault is located to the south of the site. In addition to faulting, an

CLIENT: MKO LTD

PROJECT NAME: DERRYCLARE PEATLAND REHABILITATION

GEOTECHNICAL & PEAT STABILITY ASSESSMENT REPORT

east-west trending anticlinal axis crosses the northernmost extent of the site. GSI mapped bedding dips range from 30 to 85° with dip direction typically towards the west.

3.4 Economic Geology

The GSI Active Quarries database indicates that the nearest quarry is Lissoughter Green Marble Quarry, located approximately 1.8km southeast of the site. The quarry produces Connemara Marble for ornamental dimension stone.

3.5 Karst

GSI Groundwater Karst Data indicates there are no mapped karst features within 20km of the site.

3.6 Geological Heritage

GSI Geological heritage mapping indicates there are no geological heritage sites within the site boundary. The closest geological heritage site is located approximately 180m to the south of the site and is described as 'A disused marble quarry site on the northeast shore of Derryclare Lough, in the Inagh Valley' and is designated as a County Geological Site.

3.7 Topography

In general, the sites' topography slopes down towards the east. Elevations range from 180m AOD along the eastern slopes of Bencorr to 20m AOD along the shores of Lough Inagh and Derryclare Lough. Slopes generally increase in steepness towards the west, where the site adjoins the upland areas of Bencorr (summit of 690m AOD) and Derryclare (summit of 660m AOD), which form a series of corries and aretes. These aretes form steep sided east-west trending ridgelines, which abut against the sites' western boundary. Two eastward flowing streams flow from the corries and travel though the site before eventually draining into Lough Inagh. The terrain within the south-eastern and north-eastern extents of the site is considerably flatter. However, it is still punctuated by localised areas of elevated ground giving the site an overall undulating or hummocky appearance.

3.8 Landslide Susceptibility

The GSI Landslide Susceptibility mapping, presented in Figure 3-3, indicates the site lies within an area classified as having "low" to "high" susceptibility, which is expected given the variable terrain present. The areas mapped as having "moderately high" to "high" landslide susceptibility are typically found along the west of the site and are characterised by steep upland terrain. These areas generally correlate with mapped "bedrock outcrop or subcrop" (Figure 3-2). Structural dip and dip directions are favourable with respect to rock slope stability (i.e. bedding dips into the slope). In-situ peat probe measurements (discussed in detail in Section 5.) indicate peat depths across these areas are typically shallow (<1m depth). It is therefore considered that the risk of landslide is considered to be negligible and that the GSI Landslide Susceptibility Classification rating at these locations does not accurately reflect actual ground conditions encountered on site.

2 3 FEB 2023 0 06 0

3.9 Previous Failures

There are no recorded peat landslides within the site (GSI, 2022). The closest recorded landslide is located approximately 1.8km to the south of the site (ITM coordinates E 483007, N 747150) and is described as having an 'undefined' landslide mechanism. The failure occurred within an area of mapped Blanket Peat.

The site walkover identified a shallow (<1m deep) historic peat landslip at probe location POI008 (ITM coordinate E 482611, N 752382), which lies outside of the RHBs (immediately west of RHB GY27_HB0012) but is still within the overall Coillte site. This east-west trending failure is defined by an approximate 10m wide and 40m long concave depression on sloping ground (measured at 26°) with a well-defined failure lobe at its base. The toe of the failure terminates at a tree line comprising mature coniferous trees, suggesting the trees either:

1. prevented further movement; or

2. grew sometime after the failure event.

However, the tree's at the toe are all growing vertically showing no signs of orientation change due to past ground movement suggesting they grew after the failure occurred. At the crown there is an approximate 1m deep backscarp how vegetated). No signs of instability were observed either upslope, downslope or along strike of the failure. Peat depths measured at and around this location were all <1m deep. The topography to the west of the failure steeply climbs until at approximately 100m from the crown there is a near vertical cliff face exposing rocks from the Bennabeola Quartzite Formation (part of an east-west trending arête separating two corries). It is believed that surface water runoff from this upland area is the main contributor to this relatively small and isolated historic peat failure.

The peat stability assessment undertaken as part of this report and discussed in Section 6. indicates a FoS of <1 for both the drained and undrained condition at the location. However, the landslip is deemed to be a shallow (<1m) and isolated occurrence, which will have a negligible impact on the proposed rehabilitation works. Further to this, shallow peat depths (<0.4m) coupled with the occurrence of bedrock outcrop downslope of this failure indicate there is little possibility of this failure, if reactivated, having any negative impact downslope (i.e. within adjacent RHB GY27_HB0012). However, this area will require appropriate monitoring both during the proposed rehabilitation works and post works as detailed in Section 9.

3.10 Previous Investigations

Between 28th July and 10th August 2021 a peat probing survey, comprising 44 no. probe locations was undertaken by RPS. The distribution of the peat probes are presented in Figure 2-1 and recorded depths ranging from 0.2 to 4.25m with a mean and median value of 1.2 and 0.9m respectively. Piezometers were installed at 29 of the 44 peat probe locations and water depths within the peat were recorded. Results from this monitoring programmes are presented in the Table 3-1, an indicate water level depths range from 0 to 0.8m with a mean depth of 0.31m. Based on these water depths the mean degree of saturation within the peat across these locations is estimated at 65%.

Table 3-1: RPS Peat Water Level Data

Location ID	Easting	Northing	Water Depth (m)	Date Monitored	Degree of Saturation (0% = Dry and 100% = fully saturated peat)
0	483210	753495	0.24	03/08/2021	93
1	483458	753128	0.1	03/08/2021	92
2	483884	753096	0.19	03/08/2021	79
3	483923	752753	0.34	03/08/2021	91
4	483604	752756	0.28	03/08/2021	93
5	483334	752835	0.47	03/08/2021	0

CLIENT: MKO LTD

PROJECT NAME: DERRYCLARE PEATLAND REHABILITATION REPORT:

GEOTECHNICAL & PEAT STABILITY ASSESSMENT REPORT

Location ID	Easting	Northing	Water Depth (m)	Date Monitored	Degree of Saturation (0% = Dry and 100% = fully saturated peat)
7	482915	752814	0.45	28/07/2021	10
13	483542	751363	DRY	03/08/2021	0
14	483968	751370	0	10/08/2021	100
16	482707	749383	0.8	28/07/2021	67
17	482460	749085	0.05	28/07/2021	99
18	482277	749311	0.06	28/07/2021	97
22	482465	749678	0.33	28/07/2021	74
23	482846	749973	0.31	28/07/2021	81
24	482950	749612	0.47	28/07/2021	62
25	483249	749889	0.56	28/07/2021	82
27	483533	750652	0.3	28/07/2021	60
28	484041	750250	0.15	28/07/2021	95
29	484063	749957	0.3	28/07/2021	14
30	483255	752421	0.2	10/08/2021	78
31	483471	752249	Not found	10/08/2021	
33	483546	751814	0.56	03/08/2021	34
34	483910	752301	0.58	03/08/2021	60
35	483891	752114	0.48	03/08/2021	62
36	483908	751748	0.25	03/08/2021	83
37	483967	750620	0.24	03/08/2021	60
38	483803	750831	Not found	10/08/2021	
39	484035	751151	0.11	10/08/2021	84
43	483186	750304	0.25	10/08/2021	86

Restoration Harvest Blocks -- - Existing Access Roads - New Access Roads Landslide Susceptibility Classification Low Low (inferred) Moderately Low Moderately Low (inferred) Moderately High Moderately High (inferred) High (inferred) Made TITLE: Landsåde Susceptibility PROJECT Derryclare Peatland Rehabilitation FIGURE NO: 3-4 CLIENT: SCALE: 1:20000 REVISION: DATE: 09/02/2023 PAGE SIZE: A3 FEHILY Cart | Dublin | Carlow www.fehilytimoney.le

FINDINGS OF SITE RECONNAISSANCE

Site Reconnaissance

As part of the assessment of potential peat failure at the proposed site, FT carried out a site reconnaissance in conjunction with the desk study review described in Section 3. This comprised walkover inspections of the site with recording of salient geomorphological features with respect to the proposed rehabilitation areas, which included peat depth and preliminary assessment of peat strength. General photographs of the site are presented in Appendix A.

The following salient geomorphological features were considered:

- Active, incipient or relict instability (where present) within the peat deposits
- Presence of shallow valley or drainage line
- Wet areas
- Any change in vegetation
- Peat depth (peat depth data was also collected by RPS in July and August 2021)
- Slope inclination and break in slope

The survey covered the proposed RHB and access track (new and existing) locations.

The method adopted for carrying out the site reconnaissance relied on experienced practitioners carrying out a visual assessment of the site supplemented with measurement of slope inclinations.

Findings of Site Reconnaissance

A site walkover was undertaken by FT over five days from the 14th to the 15th November and the on the control of the control o A site walkover was undertaken by FT over five days from the 14 to the 13 hours and with occasional light Section 2022. Weather conditions during the site walkover were partly cloudy with occasional light Section 2020. Site walkovers were also undertaken by RPS between showers and low temperatures ranging from 5 to 8°C. Site walkovers were also undertaken by RPS between 2 3 FEB 2023 O 28th July and 10th August 2021.

The main findings from the site walkover are as follows:

- The site is typically covered by a thin mantle of Blanket Peat, which is frequently punctuated by bedrock outcrops. Bedrock outcrops and glacial till deposits are more frequent along the wester extent of the site, where the topography steepens and elevations increase as your approach the summit of Derryclare. A pair of incised river channels, which flow from two adjacent glacial corries on the eastern face of Derryclare, expose deposits of blanket peat overlying till, which in turn overlies the pale quartzite rocks and schists of the Bennabeola Quartzite Formation and Streamstown Schist Formation respectively.
- The sites' topography varies considerably. In general, the terrain can be described as having moderate to steep slopes displaying a hummocky terrain. These hummocks are believed to be indicative of shallow knolls of sub-cropping bedrock mantled by relatively thin deposits of peat over till. This is evidenced at several locations throughout the site where exposed outcrops display a morphology, which mimics the hummocky terrain of the adjacent peat covered landscape.
- Peat depths vary across the site depending on mainly topography. Deeper peat (>3m) is confined to (3) the north (RHB GY27_HB0021, GY27_HB0009 and GY27_HB0010) and south (RHB GY27_HB0027 and

P22-263 www.fehilytimoney.ie Page 15 of 40

immediately south of GY27_HB0016) of the site and were recorded in areas of flatter terrain. Peat deposits upslope of these areas typically display depths of <1.5m. The distribution of peat depths across the site is presented as a heat map with peat probe depths in Figure 4-1. In general thinner peat deposits were encountered on slopes.

- The deepest peat deposit was encountered at peat probe location PP002 (ITM coordinates E 482320, N 749000), which is outside of the Coillte site boundary. This area is characterised by buoyant peat TIONNOO Junto gently undulating to flat terrain with frequent areas of standing water (no bog holes were observed Negetation typically comprises grass, rush and sphagnum. This flat area of deep peat is confined to the north, south and west by bedrock outcrops. The western boundary is cut by a south-Expest flowing stream beyond which is hummocky peatland with frequent bedrock outcrops. The geology along the southern boundary is defined by a northeast-southwest striking conformable contact between The Streamstown Schist Formation and Bennabeola Quartzite Formation; a similarly contact between the trending fault is located to the north of this area and along strike or this comornia. The trending fault is located to the north of this area and along strike or this comornia. The trending fault is located to the north of this area and along strike or this comornia. The trending lines is the second of peat.
 - A total of approximately 130 no. (86 no. completed by FT and 44 no. completed by RPS) peat depth (5)probes were carried out on site during the various site visits. Peat depths recorded across the site ranged from 0.0 to 4.7m with an average depth of 1.1m (Figure 4-1). Approximately 63% of probe locations recorded peat depths of less than 1.0m and 86% of less than 2.0m. A number of localised readings were recorded where peat depths were between 2.0 and 4.7m. Base of peat was typically recorded as sand and gravel (till) or bedrock. Importantly, peat depth varies considerably over relatively short distances and is believed to be a function of the underlying bedrock's hummocky morphology. In general, the peat probes were relatively dry when extracted from the ground, indicating a low saturation level.
 - The land within the RHBs is predominantly forested, containing coniferous trees at different stages (6) of maturity. Some of the RHBs have been felled but the stumps and root system remain intact.
 - Forestry drainage channels were observed throughout the site and can be clearly seen on available online aerial photography. Where observed during the site walkover, these channels were typically dry. Natural drainage channels also proliferate the site; these are often narrower and deeper than the forestry drainage and, during the time of the site walkover, appear to be responsible for most of the surface water drainage.
 - One historic peat failure was identified just outside of the site boundary and has been described earlier. No evidence of ongoing peat instability was noted in this area, or elsewhere on the site, during the site walkovers.
 - The occurrence of buoyant peat was recorded at four peat probe locations (PP001, PP002, PP037 and PP043) where peat depths range from to 1.7 to 4.7m.
 - (10) Localised areas of ponded water were recorded. This is not unexpected given the ground conditions and the flat terrain present in localised areas across the site.
 - (11) With respect to the existing and proposed access roads, peat depths are typically less than 1.0m (average 1m) with localised deeper deposits of up to 3.0m recorded. All existing access roads, which are typically constructed sidelong to the site slopes, appear to be founded on either till or bedrock.
 - (12) Slope angles across the site range from 1 to 32 degrees with a mean and median value of 10 and 7.5 degrees respectively. The slope angle was obtained on site using a handheld Silva Clino Master, which has an accuracy of +/- 0.25 degrees. The slope angle quoted typically reflects the representative slope at each of the peat probe locations. The variable and sometimes steep topography/nature of the terrain on site highlights the potential risk of peat failure.

GEOTECHNICAL & PEAT STABILITY ASSESSMENT REPORT

PEAT DEPTHS, STRENGTH & SLOPE AT RHB AND NEW ACCESS ROAD LOCATIONS

As part of the site walkover, peat depth, in-situ peat strength and slope angles were recorded at various locations across the site.

5.1 **Peat Depth**

Peat depth probes were carried out within the proposed RHBs and along access roads. The locations of the probes were predetermined at the desk study stage to complement the existing RPS peat probe survey undertaken in 2021 and to give a general coverage of the site.

5.2 Peat Strength

The strength testing was carried out in-situ using a Geonor H-60 Hand-Field Vane Tester. From FT's experience d vanes give indicative results for in-situ strength of peat and would be considered best practice for the field NONNOOs SHAMON of peat strength.

The slope angles at each of the main infrastructure locations were obtained using a community of the main infrastructure locations were obtained using a community of the slope angles at each of the main infrastructure locations were obtained using a community of the main infrastructure locations were obtained using a community of the main infrastructure locations were obtained using a community of the main infrastructure locations were obtained using a community of the main infrastructure locations were obtained using a community of the main infrastructure locations were obtained using a community of the main infrastructure locations were obtained using a community of the main infrastructure locations were obtained using a community of the main infrastructure locations were obtained using a community of the main infrastructure locations were obtained using a community of the main infrastructure locations were obtained using a community of the main infrastructure locations were obtained using a community of the main infrastructure locations were obtained using a community of the main infrastructure locations were obtained using a community of the main infrastructure locations were obtained using a community of the main infrastructure locations were obtained using a community of the main infrastructure locations were obtained using a community of the main infrastructure locations were obtained using a community of the main infrastructure locations were obtained using a community of the main infrastructure locations were obtained using a community of the main infrastructure locations were obtained using a community of the main infrastructure locations were obtained using a community of the main infrastructure locations were obtained using a community of the main infrastructure locations were obtained using a community of the main infrastructure location were obtained using a community of the main infrastructure location were obtained using a community of the main infrastructure location were location with the main

The slope angle quoted typically reflects the general slope at each of the peat probe locations. It should be noted that slope angles derived from contour survey plans (such as for the RPS peat probe locations) would be considered approximate, as such surveys are dependent on the density of survey data and do not always reflect local variations in ground topography. Slope angles recorded during the site reconnaissance by FT using handheld equipment would generally be deemed more accurate and representative of local topography.

Summary of Findings

Based on the peat depths recorded across the site by FT and RPS, the peat varied in depth from 0.0 (no peat) to 4.7m with a mean and median depth of 1.1m and 0.8m respectively. All peat depth probes carried out on site have been utilised to produce a heat map illustrating peat depths across the RHBs (Figure 4-1).

A summary of the peat depths is given in Table 5-1. The data presented in Table 5-1 is used in the peat stability assessment of the site. RSP locations were excluded from the stability analyses as no slope angles were provided.

CLIENT: MKO LTD

PROJECT NAME: DERRYCLARE PEATLAND REHABILITATION

REPORT: GEOTECHNICAL & PEAT STABILITY ASSESSMENT REPORT

Table 5-1: Peat Depth & Slope Angle at RHB, Access Roads and Points of Interest

Location	Easting	Northing	Peat Depth Range (mbgl)	Slope Angle Range (degrees)
Restoration Harvest Blocks (Coordinates represent appro	x. centre of RHB)			
GY27_3_09	482827	749973	0.1 to 2.0	3 to 10
GY27_HB0009	483856	753047	2.0 to 3.7	3 to 15
GY27_HB0010	483852	752726	0.4 to 4.3	2 to 4
GY27_HB0011	483800	752243	0.9 to 2.0	3
GY27_HB0012	482865	752344	0.0 to 2.5	2 to 28
GY27_HB0013	483493	750691	0.0 to 0.7	5 to 32
GY27_HB0014	482481	749694	0.1 to 2.0	2 to 20
GY27_HB0015	482161	749574	0.1 to 1.5	5 to 10
GY27_HB0016	482461	749191	0.1 to 1.7	2 to 12
GY27_HB0017	482701	749106	0.0 to 0.2	5 to 30
GY27_HB0018	483725	752502	0.2 to 0.4	3 to 8
GY27_HB0020	482900	749603	0.9 to 1.3	12
GY27_HB0021	483159	752945	0.2 to 3.3	3 to 8
GY27_HB0022	483382	751458	0.1 to 1.4	5 to 15
GY27_HB0023	482714	749676	0.0 to 0.9	3
GY27_HB0024	482819	749388	0.2 to 2.4	2 to 10
GY27_HB0027	483361	749396	0.4 to 4.0	2 to 7
GY27_HB0028	483366	749952	0.3 to 3.1	5 to 10
GY27_HB0029	483472	750413	0.0 to 0.7	15 to 16
GY27_HB0030	483121	749806	0.0 to 1.4	8
Access Roads (Coordinates represent approx. centre of A	ccess Road)			
GY27R0025	483687	751453	0.0 to 2.8	1 to 24
GY27R0026	484034	751590	0.0 to 0.3	3 to 7
GY27R0027	483407	750208	0.0 to 1.4	5 to 16
GY27R0049	484363	749945	0.5 to 1.8	3
GY27R0052	483290	750552	0.0 to 0.8	13
GY27R0054	482692	749385	0.0 to 2.0	2 to 12
New Access Road (North)	483727	752817	0.2 to 3.0	3 to 4
New Access Road (South)	482567	749472	0.1 to 1.1	2 to 20
Points of Interest / Areas outside of Restoration Harvest	Blocks	-	O TO THE	-
PP001 – expansive area of deeper peat (not in block)	482609	749095	2.3	3
PP002 – expansive area of deeper peat (not in block)	482320	749000	4.7	2
POI008 - area of historic peat failure (not in block/site)	482611	752382	1.0	26

Note 1: The data presented in the table above is used in the peat stability assessment of the site.

In addition to probing, in-situ shear vane testing was carried out as part of the ground investigation. Strength testing was carried out at selected locations across the site to provide representative coverage of indicative peat strengths. The results of the vane testing with depth are presented in Figure 5-1.

peat strengths. The results of the vane testing with depth are presented in Figure 5-1.

The hand vane results indicate undrained shear strengths in the range 4 to 40kPa, with a mean and median value of 18 and 16kPa respectively. The strengths recorded would be typical of well drained peat as is generally present on site.

Peat strength at sites of known peat failures (assuming undrained loading failure) are generally very low, for example the undrained shear strength at the Derrybrien failure (AGEC, 2004) as derived from back analysis, was estimated at 2.5kPa. The recorded undrained strength at Sheskin South is significantly greater than thousand lower bound values for Derrybrien indicating that there is no close correlation to the peat conditions at the Derrybrien site and that there is significantly less likelihood of failure on the Proposed Development site.

MKO LTD

PROJECT NAME: DERRYCLARE PEATLAND REHABILITATION

REPORT

GEOTECHNICAL & PEAT STABILITY ASSESSMENT REPORT

CLIENT: MKO LTD

PROJECT NAME: DERRYCLARE PEATLAND REHABILITATION

GEOTECHNICAL & PEAT STABILITY ASSESSMENT REPORT

6. PEAT STABILITY ASSESSMENT

The peat stability assessment includes an assessment of the stability of the natural peat slopes for individual parcels across the site including the RHBs and along the proposed access roads. The assessment also analyses the stability of the natural peat slopes with a surcharge loading of 10kPa, simulating the temporary load created by forestry machinery. On occasion, forestry machinery (such as harvesters) will exert ground pressures >10kPa on the underlying peat. However, the extensive root system from the existing and recently felled trees within the RHBs is anticipated to form a sufficient anchorage to support the temporary higher loadings produced by these plant. Additional measures to include the use of brash mattresses to support working platforms and haul roads shall also be used.

6.1 Methodology for Peat Stability Assessment

Stability of a peat slope is dependent on several factors working in combination. The main factors that influence peat stability are slope angle, shear strength of peat, depth of peat, pore water pressure and loading conditions.

An adverse combination of factors could potentially result in peat sliding. An adverse condition of one of the above-mentioned factors alone is unlikely to result in peat failure. The infinite slope model (Skempton and DeLory, 1957) is used to combine these factors to determine a factor of safety for peat sliding. This model is based on a translational slide, which is a reasonable representation of the dominant mode of movement for peat failures.

To assess the factor of safety for a peat slide, an undrained (short-term stability) and drained (long-term stability) analysis has been undertaken to determine the stability of the peat slopes on site.

- The undrained loading condition applies in the short-term during construction and until construction induced pore water pressures dissipate.
- The drained loading condition applies in the long-term. The condition examines the effect of the change in groundwater level as a result of rainfall on the existing stability of the natural peat slopes.

Undrained shear strength values (c_u) for peat are used for the total stress analysis. Based on the findings of the 2003 Derrybrien failure and other failures in peat, undrained loading during construction was found to be the critical failure mechanism.

A drained analysis requires effective cohesion (c') and effective friction angle (ø') values for the calculations. These values can be difficult to obtain because of disturbance experienced when sampling peat and the difficulties in interpreting test results due to the excessive strain induced within the peat. To determine suitable drained strength values a review of published information on peat was carried out. Table 6-1 shows a summary of the published information on peat together with drained strength values.

From Table 6-1 the values for c' ranged from 1.1 to 8.74kPa and ø' ranged from 21.6 to 43°. The average c' and ø' values are 4.5kPa and 30° respectively. Based on the above, it was considered to adopt a conservative approach and to use design values below the averages. For design the following general drained strength values have been used for the site:

c' = 4kPa

ø' = 25°

2 3 FEB 2023 0 06 0

www.fehilytimonev.ie

CLIENT: MKO LTD
PROJECT NAME: DERRYCLARE PEATLAND REHABILITATION
REPORT: GEOTECHNICAL & PEAT STABILITY ASSESSMENT REPORT

Table 6-1: List of Effective Cohesion and Friction Angle Values for Peat

-	Reference	Cohesion, c' (kPa)	Friction Angle, ø' (degrees)	Testing Apparatus/ Comments
COUNCIL	Hanrahan et al (1967)	5 to 7	36 to 43	From triaxial apparatus
7	Rowe and Mylleville (1996)	2.5	28	From simple shear apparatus
0900	S 3 LEB 5053 (0891) avbnaJ	2 to 4	27.1 to 32.5	Mainly ring shear apparatus for normal stress greater than 13kPa
WOILDES THEMP	S CHIMING & DEVELO	5 to 6	7.5	At zero normal stress
13110	Carling (1986)	6.5	0	-
	St. 141 St. 200 St. 20	0	38	From ring shear and shear box apparatus. Results are not considered representative.
	Farrell and Hebib (1998)	0.61	31	From direct simple shear (DSS) apparatus. Result considered too low therefore DSS not considered appropriate
	Rowe, Maclean and	1.1	26	From simple shear apparatus
	Soderman (1984)	3	27	From DSS apparatus
	McGreever and Farrell	6	38	From triaxial apparatus using soil with 20% organic content
	(1988)	6	31	From shear box apparatus using soil wit 20% organic content
	Hungr and Evans (1985)	3.3	-	Back-analysed from failure
	Dykes and Kirk (2006)	3.2	30.4	Test within acrotelm
	Dykes and Kirk (2006)	4	28.8	Test within catotelm
	Warburton et al (2003)	5	23.9	Test in basal peat
	Warburton et al (2003)	8.74	21.6	Test using fibrous peat
	Hendry et al (2012)	0	31	Remoulded test specimen
	Komatsu et al (2011)	8	34	Remoulded test specimen
	Zwanenburg et al (2012)	2.3	32.3	From DSS apparatus
	Den Haan & Grognet (2014)		37.4	From large DSS apparatus
	O'Kelly & Zhang (2013)	0	28.9 to 30.3	Tests carried out on reconstituted, undisturbed and blended peat samples

REPORT:

6.2 Analysis to Determine Factor of Safety (Deterministic Approach)

The purpose of the analysis was to determine the Factor of Safety (FoS) of the peat slopes using infinite slope analysis. The analysis was carried out at RHBs and along the proposed access roads.

The FoS provides a direct measure of the degree of stability of the slope. A FoS of less than 1.0 indicates that a slope is unstable, a FoS of greater than 1.0 indicates a stable slope.

The acceptable safe range for FoS typically ranges from 1.3 to 1.4. The previous code of practice for earthworks BS 6031:1981 (BSI, 1981), provided advice on design of earthworks slopes. It stated that for a first-time failure with a good standard of site investigation the design FoS should be greater than 1.3.

As a general guide the FoS limits for peat slopes in this report are summarised in Table 6-2.

Table 6-2: Factor of Safety Limits for Slopes

Factor of Safety (FoS)	Degree of Stability
Less than 1.0	Unstable (red)
Between 1.0 and 1.3	Marginally stable (yellow)
1.3 or greater	Acceptable (green)

Eurocode 7 (EC7) (IS EN 1997-1:2005) now serves as the reference document and the basis for design geotechnical engineering works. The design philosophy used in EC7 applies partial factors to soil parameters, actions and resistances. Unlike the traditional approach, EC7 does not provide a direct measure of stability, since global Factors of Safety are not used.

As such, and in order to provide a direct measure of the level of safety on a site, EC7 partial factors have not been used in this stability assessment. The results are given in terms of FoS.

Lower bound undrained shear strength (c_u) values for the peat of 4kPa (for slopes <6°) and 10kPa (for slopes >6°) were selected for the assessment and were based on the c_u values recorded on site. It should be noted that these c_u values are considered a conservative value for the analysis and are not representative of all peat present across the site. In reality the peat generally has a higher undrained strength.

The formula used to determine the factor of safety for the undrained condition in the peat (Bromhead, 1986) is as follows:

$$F = \frac{c_u}{\gamma z \sin \alpha \cos \alpha}$$

Where:

F = Factor of Safety

cu = Undrained strength

y = Bulk unit weight of material

2 3 FEB 2023 0 06 0

P22-263

www.fehilytimoney.le

Page 23 of 40

Depth to failure plane assumed as depth of peat z =

Slope angle $\alpha =$

The formula used to determine the factor of safety for the drained condition in the peat (Bromhead, 1986) is as follows:

 $F = \frac{c' + (\gamma z - \gamma_w h_w) \cos^2 \alpha \tan \phi'}{\gamma z \sin \alpha \cos \alpha}$

COUNTY COUNCIL

Factor of Safety Effective cohesion

WHING & DEVELOPMENT SECTION Bulk unit weight of material (Peat)

Depth to failure plane assumed as depth of peat

yw = Unit weight of water

hw = Height of water table above failure plane

 α = Slope angle

ø' = Effective friction angle

For the drained analysis the level of the water table above the failure surface is required to calculate the factor of safety for the slope. Since the water level in blanket peat can be variable and can be recharged by rainfall, it is not feasible to establish its precise location throughout the site. Therefore, a sensitivity analysis using water level ranging between 0% and 100% of the peat depth was conducted, where 0% equates to the peat being completely dry and 100% equates to the peat been fully saturated.

The following general assumptions were used in the analysis of peat slopes at each location:

- (1) Peat depths are based on the maximum peat depth recorded at each location from the walkover surveys.
- (2) The slope angles used in the peat stability assessment were obtained during the site reconnaissance by FT using handheld equipment. Slope angles were not recorded for the 44 no. RPS peat probe locations. As a result they will not be included in the stability analysis.
- (3) Slope angle at base of sliding assumed to be parallel to ground surface.
- (4) A lower bound undrained shear strength, cu for the peat of 4kPa and 10kPa, depending on the location, was selected for the assessment. The value of 10kPa was used in areas with steeper slopes (>6°). The lowest recorded value on the site during the site walkover was 4kPa. It should be noted that a cu of 4/10kPa for the peat is considered a conservative value for the analysis and is not representative of all peat present across the site. In reality, the majority of the peat has a significantly higher undrained strength as a result of the extensive drainage (both natural and artificial) present within the forestry across the site.

For the stability analysis two load conditions were examined, namely

Condition (1): no surcharge loading:

Condition (2): surcharge of 10 kPa, to represent temporary loading from site traffic and forestry

machinery is assumed as a worst case.

Results of Analysis

6.3.1 Undrained Analysis for the Peat

The results of the undrained analysis for the natural peat slopes at all locations analysed are presented in Appendix C and the results of the undrained analysis for the most critical load case (load condition 2) are shown on Figure 6-1. The undrained analysis for load condition 2 is considered the most critical load case as most peat failures occur in the short term upon loading of the peat surface. The results from the RHBs and along access roads, are summarised in Table 6-3.

The calculated FoS for load condition 1 is in excess of 1.30 for each of the peat probe locations (73 no. locations) analysed with a range of FoS of 1.78 to 58.48, indicating a low risk of peat instability.

The calculated FoS for load condition 2 is in excess of 1.30 for each of the peat probe locations (72 no. locations), with the exception of peat probe location POI008, which gave a undrained FOS of 0.89. POI008 represents an isolated historic peat failure, which is located outside of the RHB and shows no sign of recent instability. The remaining locations were analysed with a range of FoS of 1.40 to 8.02, again indicating a low risk of peat instability with respect to the RHBs and access roads.

Table 6-3: Factor of Safety Results (Undrained Condition)

Location ID	Easting Note 1	Northing Note 1	Minimum Factor of Safety for Load Condition		
			Condition (1)	Condition (2)	
estoration Harvest Block (RHB)					
GY27_3_09	482827	749973	3.65	2.25	
GY27_HB0009	483856	753047	2.60	2.05	
GY27_HB0010	483852	752726	2.55	1.91	
GY27_HB0011	483800	752243	3.06	2.19	
GY27_HB0012	482865	752344	1.97	1.40	
GY27_HB0013	483493	750691	3.63	ANNING LAST VELOP	
GY27_HB0014	482481	749694	9.07	2.83 3 FEB34000	
GY27_HB0015	482161	749574	3.90 2	3 FF239n22 0	
GY27_HB0016	482461	749191	6.75	4.25	
GY27_HB0017	482701	749106	14.40	1/2 2.40	
GY27_HB0018	483725	752502	18.14	5.18VIV CI	
GY27_HB0020	482900	749603	5.46	2.59	
GY27_HB0021	483159	752945	1.92	1.44	

CLIENT:

MKO LTD

PROJECT NAME: DERRYCLARE PEATLAND REHABILITATION
REPORT: GEOTECHNICAL & PEAT STABILITY ASSESSMENT REPORT

Location ID	Easting Note 1	Northing Note 1	Minimum Factor of Safety for Load Condition		
			Condition (1)	Condition (2)	
U EZUZ 6827_HBQD22	483382	751458	3.29	1.92	
GY27_HB0023	482714	749676	8.06	3.82	
JWHOTHAN GYRALIHBOO24	482819	749388	5.73	3.82	
GY27_HB0027	483361	749396	2.87	2,29	
GY27_HB0028	483366	749952	2:66	1.83	
GY27_HB0029	483472	750413	5.39	2.22	
GY27_HB0030	483121	749806	5,18	3,02	
Existing Access Roads	HE STATE				
GY27R0025	483687	751453	4.86	2.00	
GY27R0026	484034	751590	30,61	6.12	
GY27R0027	483407	750208	5.18	2.22	
GY27R0049	484363	749945	4.25	2.73	
GY27R0052	483290	750552	No	Peat	
GY27R0054	482692	749385	5.46	2.59	
Proposed Access Roads					
Access Road (South)	483727	752817	10.43	2.83	
Access Road (North)	482567	749472	1.92	1.44	
Peat Probe Locations Outside of RHI	Bs				
POI008 Note 2	482611	752382	1.78	0.89	
PP001	482609	749095	3.33	2.32	
PP002	482320	749000	2.44	2.01	

Note 1 – for RHBs and Roads the ITM coordinate represent the approx, centre of the feature

Note 2 – this peat failure is deemed to be a shallow (<1m) and isolated occurrence, which will have a negligible impact on the proposed rehabilitation works. It will therefore be discounted from any further assessment.

Drained Analysis for the Peat 6.3.2

The results of the drained analysis for the peat are presented in Appendix C. The results from the RHBs and along access roads, are summarised in Table 6-4. As stated previously, the drained loading condition examines the effect of in particular, rainfall on the existing stability of the natural peat slopes and represents the post rehabilitation phase of the development.

Out of the 73 no. analysed peat probe locations, 69 no. gave a calculated FoS for load condition 1 in excess of 1.30 (FoS range of 1.45 to 46.07). Three peat probe locations gave a FoS of between 1 and 1.3 and one peat probe location gave a FoS of <1. In general, results from this analysis indicate the site has a low risk of peat instability. However, further consideration has to be given to the following RHBs with respect to isolated low (<1.3) FoS values:

- GY27_HB0009
- GY27_HB0012
- GY27 HB0028

The calculated FoS for load condition 2 is in excess of 1.30 for each of the locations (70 no. locations), with the exception of three peat probe locations, which give a drained FoS ranging from 0.99 to 1.16. The remaining locations were analysed with a range of FoS of 1.96 to 13.79, indicating a low risk of peat instability. However, further consideration has to be given to the following RHBs with respect to isolated low (<1.3) FoS values:

etor of Safety Results (Drained Conditions)

Location ID	Easting Note 1	Northing Note 1	Minimum Factor of Safety for Load Condition (Assuming 100% Water	
			Condition (1)	Condition (2)
Restoration Harvest Block (RHB)				
GY27_3_09	482827	749973	1.46	1.92
GY27_HB0009	483856	753047	1.04	1.76
GY27_HB0010	483852	752726	2.55	4:14
GY27_HB0011	483800	752243	3.06	4.73
GY27_HB0012	482865	752344	0.79	1.15
GY27_HB0013	483493	750691	1.45	1.16
GY27_HB0014	482481	749694	3.63	2.30
GY27_HB0015	482161	749574	1.56	1.99
GY27_HB0016	482461	749191	6.75	3.78
GY27_HB0017	482701	749106	5.76	1.92
GY27_HB0018	483725	752502	7.26	4.44
GY27_HB0020	482900	749603	2.19	2.19
GY27_HB0021	483159	752945	1.67	2.45
GY27_HB0022	483382	751458	3.29	2.85

MKO LTD

REPORT

PROJECT NAME: DERRYCLARE PEATLAND REHABILITATION **GEOTECHNICAL & PEAT STABILITY ASSESSMENT REPORT**

Location ID	Easting Note 1	Northing Note 1	Minimum Factor of Safety for L Condition (Assuming 100% Wa	
			Condition (1)	Condition (2)
GY27_HB0023	482714	749676	8.50	8.71
GY27_HB0024	482819	749388	5.73	4.15
GY27_HB0027	483361	749396	2.76	3.23
GY27_HB0028	483366	749952	1.06	1.56
GY27_HB0029	483472	750413	2.16	1.84
GY27_HB0030	483121	749806	2.07	2.59
Existing Access Roads				
GY27R0025	483687	751453	1.94	1.64
GY27R0026	484034	751590	16.53	5.92
GY27R0027	483407	750208	2.07	1.84
GY27R0049	484363	749945	4.25	5.91
GY27R0052	483290	750552	No	Peat
GY27R0054	482692	749385	2.19	2.19
Proposed Access Roads		CO TENTING		
Access Road (South)	483727	752817	10.43	2.30
Access Road (North)	482567	749472	1.92	3.10
Peat Probe Locations Outside of RHE	3s			
POI008 Note 2	482611	752382	1.02	0.99
PP001	482609	749095	3.33	5.02
PP002	482320	749000	2/44	4:35

Note 1 – for RHBs and Roads the ITM coordinate represent the approx. centre of the feature

Note 2 - this peat failure is deemed to be a shallow (<1m) and isolated occurrence, which will have a negligible impact on the proposed rehabilitation works. It will therefore be discounted from any further assessment.

Based on the findings from the initial drained analysis (assuming water level at 100%) a sensitivity analysis was undertaken to assess varying degrees of saturation within the peat slopes. The analysis was undertaken using water levels ranging from 0 to 100% (at 25% intervals). The results from this analysis are presented in Appendix C.

Existing water monitoring data captured by RPS in 2021, coupled with field observations made during FT's 2022 site walkovers, indicate groundwater depths, particularly on sloping ground (>6°) are deeper than assumed in the initial analysis. To reflect actual site conditions, a water level of 50% within the peat was chosen. This is still deemed to be a conservative estimate.

The FoS was recalculated using the 50% water level for locations that initially returned a drained FoS of <1.3. The results of this analysis are summarised in Table 6-5 and show drained FoS values >1.3, with the exception of POI008 (FoS = 1.22).

www.fehilytimoney.ie

REPORT:

PROJECT NAME: DERRYCLARE PEATLAND REHABILITATION

GEOTECHNICAL & PEAT STABILITY ASSESSMENT REPORT

Table 6-5: Comparison of Factor of Safety Results at 100% and 50% Water Levels within the Peat

Location ID		y for Load Condition g 100% Water)	Factor of Safety for Load Condition (Assuming 50% Water)		
	Condition (1)	Condition (2)	Condition (1)	Condition (2)	
GY27_HB0009	1.04	1.76	3,26	3.51	
GY27_HB0012	0.79	1.15	1.88	1.32	
GY27_HB0013	1.45	1.16	1.93	1.36	
GY27_HB0028	1.06	1.56	2,39	2.47	
POI008 Note 1	1.02	0.99	1.49	1.22	

Note 1 – this peat failure is deemed to be a shallow (<1m) and isolated occurrence, which will have a negligible impact on the proposed rehabilitation works. It will therefore be discounted from any further assessment.

The areas with FoS values <1.3 at 100% water level (Table 6-5) will be subject to appropriate monitoring (both during and post works) as detailed in Section 9. In addition to monitoring, the appointed forestry contractor shall ensure that the natural site drainage is maintained during the rehabilitation works, thereby reducing the likelyhood of water levels within the peat of rising to 100%.

7. PEAT STABILITY RISK ASSESSMENT

A peat stability risk assessment was carried out for the RHBs and along the access roads. This approach takes into account guidelines for geotechnical/peat stability risk assessments as given in PLHRA (2017) and MacCulloch (2005).

The risk assessment uses the results of the stability analysis (deterministic approach) in combination with qualitative factors, which cannot be reasonably included in a stability calculation but nevertheless may affect the occurrence of peat instability, to assess the risk for each infrastructure element.

For each of the RHBs and access roads, a risk rating (product of probability and impact) is calculated and rated as shown in Table 7-1. Where a subsection is rated 'Medium' or 'High', control measures are required to reduce the risk to at least a 'Low' risk rating. Where a subsection is rated 'Low' or 'Negligible', only routine control measures are required.

COUNCIL	Risk Rat	ing Legend
		High: avoid works in area or significant control measures required
EB 2023 0 0 6 0	11 to 16	Medium: notable control measures required
(1)30 ·	5 to 10	Low: only routine control measures required
NO & DEVELOPMENT SECTION	ININI NO O	Negligible: none or only routine control measures required

A full methodology for the peat stability risk assessment is given in Appendix D.

7.1 Summary of Risk Assessment Results

The results of the peat stability risk assessment for potential peat failure at the main infrastructure elements is presented as a Geotechnical Risk Register in Appendix B and summarised in Table 7-2. The risk rating for each area (RHBs, Existing Access Roads and Proposed Access Roads) is designated Low to Medium following some general mitigation/control measures being implemented.

Details of the required mitigation/control measures can be found in the Geotechnical Risk Register for each infrastructure element (Appendix B) and are summarised below:

- Ensure appropriate supervision of the site is undertaken by the appointed contractor using experienced
 personnel.
- Use of experienced contractors, trained operators and appropriate plant to carry out the work.
- Use of experienced geotechnical staff for supervision of rehabilitation works for risk ratings of >11 (Medium to High risk)
- Maintain hydrology of area as far as possible by ensuring the site's natural drainage is preserved during
 the proposed rehabilitation works. This will help prevent the build-up of water pressures in the peat,
 leading to the peat becoming "buoyant".
- Stabilise wet peat using stacked branches or trunks laid across/perpendicular to temporary haulage routes (not applicable to existing/new access roads).
- Post works monitoring of the site be undertaken by experienced geotechnical staff over a period of no less than 12 months (where risk rating is >11 (Medium to High risk) after post control measures are prescribed).

www.fehilytimoney.le — Page 32 of 40

150

Summary of Peat Stability Risk Register Table 7-2:

Location ID	Pre-Control Measure Implementation Risk Rating	Pre-Control Measure Implementation Risk Rating Category	Notable Control Measures Required	Post-General Control Measure Implementation Risk Rating	Post-General Control Measure Implementation Risk Rating Category
estoration Harve	est Block (RHB)				
GY27_3_09	Low	5-10	No	Low	5-10
GY27_HB0009	High	17-25	Yes	Low	5-10
GY27_HB0010	High	17-25	Yes	Low	5-10
GY27_HB0011	Low	5-10	No	Low	5-10
GY27_H80012	High	17-25	Yes	Low	5-10
GY27_HB0013	Medium	11-16	No	tow	5-10
GY27_HB0014	Low	5-10	No	Low	5-10
GY27_HB0015	Low	5-10	No	Low	5-10
GY27_HB0016	Low	5-10	No	Low	5-10
GY27_HB0017	Low	5-10	No	Low	5-10
GY27_HB0018	Low	5-10	No	Low	5-10
GY27_HB0020	Low	5-10	No	Low	5-10
GY27_HB0021	Medium	11-16	No	Low	5-10
GY27_HB0022	Low	5-10	No	Low	5-10
GY27_HB0023	Low	5-10	No	Low	5-10
GY27_HB0024	Low	5-10	No	Low	5-10
GY27_HB0027	Medium	11-16	No	Low	5-10
GY27_HB0028	Medium	11-16	No	Low	5-10
GY27_HB0029	Low	5-10	No	Low	5-10
GY27_HB0030	Low	5-10	No	Low	5-10
Existing Access Ro	oads		MATERIAL		
GY27R0025	Low	5-10	No	Low	5-10
GY27R0026	Low	5-10	No	Low	5-10
GY27R0027	Lów	5-10	No	Low ANN	5-10 NG & DEVELOPMEN, 5-10 FR 20220
GY27R0049	Low	5-10	No	Low	5-10 MEN
GY27R0052	Low	5-10	No	Low 2 2 1	5-10
GY27R0054	Low	5-10	No	Low	EB 202300 n
New Access Road	s	1000000			
Access Road (South)	Low	5-10	No	Low	COUNTY COUNC
Access Road (North)	High	11-16	No	Low	5-10

FOUNDING DETAILS FOR ACCESS ROADS

8.1 Access Roads

8.1 Access Roads

**Name of the second secon

The total length of new access roads to be constructed on site is 1.58km (Figure 2-1)

It is anticipated that peat spoil resulting from the construction of the proposed access roads can be re-used in the blocking of forestry drainage as part of the re-wetting works.

P22-263

www.fehilytimoney.ie -- Page 34 of 40 REPORT

9. WORKS MONITORING AND POST WORKS MONITORING

9.1 Works Supervision and Monitoring

Works supervision can be classed into two divisions which require different levels of experience with respect to the supervisor and shall be based on the post control risk rating presented in Appendix B.

Where the post control risk rating is ≤ 10 (Negligible to Low) the works shall be supervised full-time by personnel with a minimum of 10 years' experience working within the forestry industry to include relevant experience in peatland rehabilitation.

Where the post control risk rating is ≥ 10 (Medium to High) the works shall be supervised full-time by a suitably qualified geotechnical engineer/ engineering geologist with no less than 10 years' relevant experience.

9.2 Movement Monitoring Posts

To monitor possible peat movements in areas where the pre-control measure risk rating (Appendix B) is \geq 10 (Medium to High), it is proposed to install sighting posts upslope and downslope of the rehabilitation works areas and access roads. Details of sighting posts are given below.

- 1. A line of sighting posts shall comprise:
 - A line of wooden stakes (typically 1 to 1.5m long) placed vertically into the peat to form a straight line.
 - b. The sighting line shall comprise 6 nos. posts at (say) 5m centres that is a line some 25m long.
 - c. A string line shall be attached to the first and last posts and all intervening posts shall be adjusted so they are just touching the string line.
- Lines of sighting posts shall be placed across the existing slope about 5m away from the area to be worked. It is recommended that the posts are located along the road at 10m intervals in areas of deep peat (say greater than 1m). Where there are relatively steeper slopes or softer ground a sighting line shall be placed down the slope, or at any location where monitoring would be deemed useful.
- Each line of sighting posts shall be uniquely referenced with each post in the line given a reference. The
 post reference shall be marked on each post (e.g. reference 1-1, 1-2, 1-3, 1-4, 1-5, and 1-6 for posts in
 line 1).
- The sighting lines shall be monitored at the beginning of each working day, and during the day were considered appropriate (e.g. when working activity is concentrated at a specific location).
- Monitoring of the posts shall comprise sighting along the line and recording any relative movement of posts from the string line.
- 6. Where increased movements are recorded the frequency of monitoring shall be increased.

A monitoring record shall be kept of the date, time and relative movement of each post, if any. This record shall be updated and stored as a spreadsheet.

2 3 FEB 2023 0 06 0

www.fehilytimoney.ie

NONN 93 ALIPOS Works Monitoring

Where the pre-control risk rating (Appendix B) is ≥ 10 (Medium to High) the affected area shall be monitored geotechnical engineer/ engineering geologist with no less than 10 years' relevant experience. The need for monitoring beyond the 12 month period shall be determined based on findings from the initial monitoring period.

As part of the post works monitoring the following factors shall be considered:

- Weather at time of visit
- · Evidence of sub peat water flow
- · Evidence of surface water flow
- Evidence of historic and recent failures/slips
- Type of vegetation
- General slope characteristics
- · Evidence of buoyant peat
- Evidence of bog pools

Photos shall also be taken at set locations and orientations during each visit for comparison purposes.

CLIENT: MKO LTD

REPORT

PROJECT NAME: DERRYCLARE PEATLAND REHABILITATION

GEOTECHNICAL & PEAT STABILITY ASSESSMENT REPORT

10. SUMMARY AND RECOMMENDATIONS

10.1 Summary

FT was engaged by MKO to undertake a geotechnical and peat stability assessment of the proposed peatland rehabilitation site at Derryclare, Co. Galway.

The findings of the peat assessment showed that the proposed RHB and new and existing access roads, generally have a low risk of peat failure and are suitable for the proposed rehabilitation works. The findings include recommendations and control measures for rehabilitation work in peat lands, all of which will be implemented in full to ensure that all works adhere to an acceptable standard of safety.

The site is typically covered by a thin mantle of Blanket Peat, which is frequently punctuated by bedrock outcropping. Bedrock outcrops and glacial till deposits are more frequent along the western extent of the site, where the topography steepens. The sites' topography varies considerably. In general, the terrain can be described as having moderate to steep slopes displaying a hummocky terrain. The land within the RHBs is predominantly forested, containing coniferous trees at different stages of maturity. Some of the RHBs have been felled but the stumps and root system remain intact.

Peat thicknesses recorded during the site walkovers from 130 probes ranged from 0.0 to 4.7m with an average depth of 1.1m. 63% of the probes recorded peat depths of less than 1.0m, with 86% of peat depth probes recorded peat depths of less than 2.0m. The deepest peat deposits of

Slope inclinations at the main infrastructure locations range from 1 to 32 degrees with a mean value of 10 degrees.

An analysis of peat sliding was carried out at each of the FT peat probe locations within the RHBs for both the undrained and drained conditions. The purpose of the analysis was to determine the Factor of Safety (FoS) of the peat slopes.

An undrained analysis was carried out, which applies in the short-term during the rehabilitation works. For the undrained condition, the calculated FoS for load conditions 1 and 2 for the locations analysed, showed that all locations within the RHBs and along the new and existing access roads returned a FoS >1.3, indicating a low risk of peat failure.

A drained analysis was also carried out, which examined the effect of in particular, rainfall on the existing stability of the natural peat slopes on site. For the drained condition (at 100% water level within the peat), the calculated FoS for load conditions (1) & (2) for the locations analysed, showed that locations within the RHBs and along the new and existing access roads typically returned FoS values >1.3. However, the analyses returned FoS values of >1.3 at six locations with the RHBs . When analysed using a 50% water level (thought to be more typical of observed site conditions), the returned FoS values all six where >1.3., indicating a low risk of peat failure. Notwithstanding this, the areas with FoS values < 1.3 at (100% water level) will be subject to appropriate monitoring (both during and post works) as detailed in Section 9. In addition to monitoring, the appointed constructor shall ensure that the natural site drainage is maintained during the rehabilitation works, thereby reducing the likelyhood of water levels within the peat of rising to 100%.

The peat stability risk assessment at the RHB locations and along the new and existing access roads identified a number of mitigation/control measures to reduce the potential risk of peat failure. See Appendix B for details of the required mitigation/control measures for each area.

www.fehilytimoneyde

In summary, the findings of the peat assessment showed that the site has an acceptable margin of safety, is suitable for the proposed peatland rehabilitation works and is considered to be at low risk of peat failure provided appropriate mitigation measures, such as maintaining the existing natural drainage network is implemented. The findings include recommendations and mitigation/control measures for rehabilitation work in peat lands, all of which will be implemented in full to ensure that all works adhere to an acceptable standard CALWAY GOUNGIL

The following recommendations are given, all of which will be implemented in full.

OILO3S LN3WdQ334343 and no that the site has a predominantly low risk of peat failure a number of mitigation/control peatlands. Mitigation/control measures identified for each of the infrastructure elements in the risk assessment will be implemented throughout the rehabilitation works (Appendix B).

> Where existing access roads are founded on sidelong ground the upslope road drainage is often blocked causing localised areas of standing water within the drainage channels. It is recommended that the existing road drainage network be adequately updated/maintained to avoid unwanted accumulations of water adjacent to the access roads.

> Ongoing post works monitoring shall be undertaken by an experienced geotechnical engineer/ engineering geologist over an initial 12 month period with further monitoring requirements to be reviewed and implemented at the end of this period if deemed necessary.

> Some areas of the site were extensively forested with heavy undergrowth (including fallen trees) present during the time of the site walkover. An additional site reconnaissance should be undertaken post felling activities to identify potential signs of instability that may have been covered by vegetation during the initial site walkover.

> In addition to the above recommendations, remediation measures as set out in The Drainage of Peatlands: impacts and rewetting techniques, 2012 should be considered with respect to tree removal and the backfilling of forestry drainage.

> To minimise the risk of rehabilitation and construction activity causing potential peat instability the Construction Method Statements (CMSs) for the project will implement in full, but not be limited to, the recommendations above. This will ensure that best practice guidance regarding the management of peat stability will be inherent in the construction phase.

11. REFERENCES

Applied Ground Engineering Consultants (AGEC) (2004). Derrybrien Wind Farm Final Report on Landslide of October 2003.

British Standards Institute (1981). BS 6031:1981 Code of practice for earthworks.

Bromhead, E.N. (1986). The Stability of Slopes.

Carling, P.A. (1986). Peat slides in Teesdale and Weardale, northern Pennines, July 1983: Description and failure mechanisms. Earth Surface Processes and Landforms, 11.

Clayton, C.R.I. (2001). Managing Geotechnical Risk. Institution of Civil Engineers, London.

Den Haan EJ and Grognet M (2014). A large direct simple shear device for the testing of peat at low stresses. Géotechnique Letters 4(4): 283-288, http://dx.doi.org/10.1680/geolett. 14.00033.

Dykes, A.P. and Kirk, K.J. (2006). Slope instability and mass movements in peat deposits. In Martini, I.P., Martinez Cortizas, A. and Chesworth, W. (Eds.) Peatlands: Evolution and Records of Environmental and Climatic Changes. Elsevier, Amsterdam.

Farrell, E.R. & Hebib, S. (1998). The determination of the geotechnical parameters of organic soils. Proceedings of International Symposium on problematic soils, IS-TOHOKU 98, Sendai, Japan.

Geological Survey of Ireland (1992). Sheet 6 Geology of North Mayo.

Geological Survey of Ireland (2006). Landslides in Ireland. Geological Survey of Ireland -Irish Landslides Group. July 2006.

Geological Survey of Ireland (2022). Online dataset public viewer, June 2022.

Hanrahan, E.T., Dunne, J.M. and Sodha, V.G. (1967). Shear strength of peat. Proc. Geot. Conf., Oslo, Vol. 1.

Hendrick, E. (1990). A Bog Flow at Bellacorrick Forest, Co. Mayo. Irish Forestry, Volume 47 (1): pp 32-44.

Hendry MT, Sharma JS, Martin CD and Barbour SL (2012). Effect of fibre content and structure on anisotropic elastic stiffness and shear strength of peat. Canadian Geotechnical Journal 49(4): 403-415, http://dx.doi.org/10.1139/t2012-003.

Hungr, O. and Evans, S.G. (1985). An example of a peat flow near Prince Rupert, British Columbia. Canadian Geotechnical Journal, 22.

Komatsu J, Oikawa H, Tsushima M and Igarashi M (2011). Ring shear test on peat. In Proceedings of the 21st International Offshore and Polar Engineering Conference, Maui, Hawaii, USA (Chung IS, Hong DV/Engert) and Prinsenberg SJ (eds)). International Society of Offshore and Polar Engineers, Cupertino, CA, USA, vol. 2, pp. 393-C700 396.

Landry J, Rochefort L (2012). The Drainage of Peatlands: Impacts and Rewetting Techniques. Research Group, Quebec, Canada, April 2012 GALWAY COUNTY COUNCI

Landva, A.O. (1980). Vane testing in peat. Canadian Geotechnical Journal, 17(1).

www.fehilytimoney.ie -- Page 39 of 40

MacCulloch, F. (2005). Guidelines for the Risk Management of Peat Slips on the Construction of Low Volume/Low Cost Roads over Peat. RoadEx 11 Northern Periphery.

Mackin F, Barr A, Rath P, Eakin M, Ryan J, Jeffrey R, Valverde F (2017). Best practice in raised bog restoration in Ireland. National Parks and Wildlife Service (2017).

McGeever J. and Farrell E. (1988). The shear strength of an organic silt. Proc. 2nd Baltic Conf., 1, Tallin USSR.

O'Kelly BC and Zhang L (2013). Consolidated-drained triaxial compression testing of peat. Geotechnical Testing Journal 36(3): 310–321, http://dx.doi.org/10.1520/ GTJ20120053.

PLHRAG (2017). Peat Landslide Hazard and Risk Assessments: Best Practice Guide for Proposed Electricity Generation Developments. Prepared for Energy Consents Unit Scottish Government, 2nd Edition. Dated April 2017.

Skempton, A. W. and DeLory, F. A. (1957). Stability of natural slopes in London Clay. Proc 4th Int. Conf. On Soil Mechanics and Foundation Engineering, Rotterdam, vol. 2, pp.72-78.

Warburton, J., Higgett, D. and Mills, A. (2003). Anatomy of a Pennine Peat Slide. Earth Surface Processes and Landforms.

Warburton, J., Holden, J. and Mills, A. J. (2003). Hydrological controls of surficial mass movements in peat. Earth-Science Reviews 67 (2004), pp. 139-156.

Zwanenburg C, Den Haan EJ, Kruse GAM and Koelewijn AR (2012). Failure of a trial embankment on peat in Booneschans, the Netherlands. Géotechnique 62(6): 479–490, http://dx.doi.org/10.1680/geot.9.P.094.

P22-263

www.fehilytimoney.ie -

Page 40 of 40

CONSULTANTS IN ENGINEERING, ENVIRONMENTAL SCIENCE & PLANNING

APPENDIX A

Photos from Site Walkover

ENTINGY COUNTY COUNCIL

0 9 0 0 EZGEneral Photos from Restoration Harvest Block GY27_3_09

PP078 (view W)

General Photos from Restoration Harvest Block GY27_HB0009

PP042 (view S)

PP049 (view N)

General Photos from Restoration Harvest Block GY27_HB0011

PP041 (view West)

CONNCIL

PP047 (view W)

General Photos from Restoration Harvest Block GY27_HB0012
PP031 (view S)

PP033 (view W)

2 3 FEB 2023 0 06 0

GALWAY COUNTY COUNCIL **5** 3 LEB 5053 0 0 2 0

General Photos from Restoration Harvest Block GY27_HB0013
PP024 (view N)

PP025 (view W)

General Photos from Restoration Harvest Block GY27_HB0014

PP014 (view E)

PP075 (view E)

General Photos from Restoration Harvest Block GY27_HB0015

PP011 (view S)

PP012 (view W)

EB 2023 0 0 6 0

COUNTY COUNCIL

PP005 (view W)

General Photos from Restoration Harvest Block GY27_HB0018

PP040 (view N)

PP041 (view N)

NG & DEVELOPMENT SECTION

2 3 FEB 2023 0 06 0

ENTINAY COUNTY COUNCIL

53 FEB 2023 0 0 6 0

General Photos from Restoration Harvest Block GY27_HB0020

PP016 (view N)

General Photos from Restoration Harvest Block GY27_HB0021
PP082 (view W)

PP083 (view W)

DEVELOPMENT SECTION 2023 0 0 6 0

ENTINYA COUNTY COUNCIL **5** 3 LEB 5053 0 0 0 0

General Photos from Restoration Harvest Block GY27_HB0022

PP076 (view N)

PP077 (view N)

General Photos from Restoration Harvest Block GY27_HB0024
PP006 (view NE)

PP074 (view E)

2 3 FEB 2023 0 06 0

CALINAY COUNTY COUNCIL 73 FEB 2023 0 06 0 MOLDES INSWIGNESS TOM Restoration Harvest Block GY27_HB0027

PP073 (view E)

PP085 (view E)

General Photos from Restoration Harvest Block GY27_HB0028

PP067 (view E)

PP067 (view S)

DEVELOPMENT SECTION

GALWAY COUNTY COUNCIL TO

ENTINAY COUNTY COUNCIL 53 FEB 2023 0 06 0

PP061 (view W)

General Photos from Existing Access Road GY27R0026

PP063 (view E)

PP063 (view W)

2 3 FEB 2023 0 06 0

GALIMAY COUNTY COUNCIL

5 3 FEB 2023 0 0 6 0

General Photos from Existing Access Road GY27R0054

PP071 (view N)

Flat peatland area between RHBs GY27_HB0016 and GY27_HB0017 PP001 (view E)

PP002 (view E)

CONSULTANTS IN ENGINEERING, ENVIRONMENTAL SCIENCE & PLANNING

APPENDIX B

Peat Stability Risk Registers

RHB ID:	GY27_3_09				
Grid Reference (Eastings, Northings):	N/A	N/A			
Distance to Watercourse (m)	< 50				
Min & Max Measured Peat Depth (m):	0.1 - 2.0				
Control Required:	No				

		Pre	Control Mea	sure Imple	ementation	Control Required	Control measures to be implemented during construction	Post-Control Measure Implementation			
Ret	Contributory/Qualitative Factors to Potential Peat Failure	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating			Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating
1	FOS = 2.25 (u), 1.46 (d)	1	4	4	Negligible	No		1	- 4	4	Negligible
2	Evidence of sub peat water flow	.1.	- 4	4	Negligible	No	1	1	4	4	Negligible
3	Evidence of surface water flow	2	4	8	Lim	No]	2	4	8	Low
4	Evidence of previous failures/slips	1	. 4	4	Negligible	No		- 1	4	4	Neglybie
5	Type of vegetation	1	4	4	Negligible	No		1.	. 4	4	Negligible
6	General slope characteristics upslope/downslope from probe location	2	:4	8	Low	No	See Below	2	4	8	Low
7	Evidence of very soft/soft day at base of peat	1	4	4.	Negligible	No	1	1	4	4	Negligible
8	Evidence of mechanically cut peat	1	- 4	4	Negligible	No		1	4	4	Negligitão
9	Evidence of quaking or buoyant peat	1	4	4	Negligible	No		1	4	4	Negligible
10	Evidence of bog pools	1	- 4	4	Negligible	No.]	1	:4	4.	Negligible
11	Relatively deep peat	2	4	8	Low	No		2	4	8	Low

	Control Measures to be Implemented Prior to/and During Rehabilitation Woks
	Maintain hydrology of area as far as possible;
	Assure appropriate supervision of the site is undertaken by the appointed contractor using suitably experienced personnel.
ii :	Use of experienced contractors and trained operators to carry out the work:

RHB ID:	GY27_HB0009				
Grid Reference (Eastings, Northings):	N/A	N/A			
Distance to Watercourse (m)	< 50 0.2 - 3.7 Yes				
Min & Max Measured Peat Depth (m):					
Control Required:					

		Pre-	Control Mea	sure Imple	ementation	Control Required	Control measures to be implemented during construction	Post-Control Measure Implementation			
Ref.	Contributory/Qualitative Factors to Potential Peat Failure	Prob (Note 2)	impact (Note 3)	Risk	Risk Rating			Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating
30	FOS = 2.05 (u), 1.04 (d)	3	4	12	Medium	No		2	. 4	8	Low
2	Evidence of sub peat water flow		4	4	Negligible	No		1	4	4	Negligible
3	Evidence of surface water flow	1	4	4	Negligible	No		1	4	4	Negligitie
4	Evidence of previous failures/slips	. 1	4	4	Negligible	No		-1	4	4	Negligible
5	Type of vegetation	1	4	4	hiegigbie	No		-3	4	4	Nephpite
6	General slope characteristics upslope/downslope from probe location	4	4	16	Medium	No	See Below	2	4	8	Low
7	Evidence of very soft/soft day at base of peat	1	4	4	Negligible	No		(1	4	4	7 ingigitie
8	Evidence of mechanically cut peat	1	4	4	Neglgibie	No		1	4.	4	Negligible
9	Evidence of quaking or buoyant peat	3	4	12	Median	No		2	4	8	Low
10	Evidence of bog pools	1	- 4	4	Negligible	No]	1	4	4	Negligible
11.	Relatively deep peat	3	4	12	Medium	No		2	4	8	Low

	Control Measures to be Implemented Prior to/and During Rehabilitation Woks
1	Maintain hydrology of area as far as possible;
i	Post works monitoring of the site be undertaken by experienced geotechnical staff over a period of no less than 12 months;
1	Use of experienced geotechnical staff for supervision of the proposed works:
v	Use of experienced contractors and trained operators to carry out the work;
v	Temporarily stabilise wet peat using stacked branches or trunks laid across the access routes.

- Note
 (1) FOS abbreviations are: u: FOS for undrained analysis, d: FOS for drained analysis.
 (2) Probability assessed as per Table A and B of Appendix E.
 (3) Impact based on distance of infrastructure element to nearest watercourse.

RHB ID:	GY27_HB0010				
Grid Reference (Eastings, Northings):	N/A	N/A			
Distance to Watercourse (m)	< 50				
Min & Max Measured Peat Depth (m):	0.4 - 4.3				
Control Required:	Yes				

		Pre-Control Measure Implementation			Post-Control Measure Implementation						
Ref.	Contributory/Qualitative Factors to Potential Peat Failure	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	Control Required	Control measures to be implemented during construction	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating
1	FOS = 1.91 (u), 2.55 (d)	- 1	4	- 4	Negligible	No		. 1	4	4	Negligible
2	Evidence of sub peat water flow	1	4	4	Negligible	No		1	4	4	Negligible
3	Evidence of surface water flow	.5	4	20	1190	No		2	4	8	Lem
4	Evidence of previous failures/slips	1	- 4	4	Neglighie	No	1	1	4	4	Negligible
5	Type of vegetation	1	4	4	Negligible	No		1	- 4	.4	Negligible
6	General slope characteristics upslope/downslope from probe location	2	4	8:	LINE	No	See Below	2	4	8	Low
7	Evidence of very soft/soft day at base of peat	1	4	4	Negligible	No		1	4	4	Negligible
8	Evidence of mechanically out peat	1	4	4	Negtable	No		1	4	4	Negligible
9	Evidence of quaking or buoyant peat	3	4	12	Medium	No		2	- 4	8	Low
10	Evidence of bog pools	1	4	4	Neglybie	No]	1	.4	4	Negligible
11	Relatively deep peat	- 4	- 4	16	Medium	No		2	4	8	Low

	Control Measures to be Implemented Prior toland During Rehabilitation Woks
I).	Maintain hydrology of area as far as possible;
	Post works monitoring of the site be undertaken by experienced geotechnical staff over a period of no less than 12 months.
	Use of experienced geotechnical staff for supervision of the proposed works;
v:	Use of experienced confractors and trained operators to carry out the work.
v	Temporarily stabilise wet peat using stacked branches or trunks laid across the access routes.

RHB ID:	GY27_HB0011				
Grid Reference (Eastings, Northings):	N/A	N/A			
Distance to Watercourse (m)	< 50				
Min & Max Measured Peat Depth (m):	0.9 - 2.0				
Control Required:	No				

		Pre-	Control Mea	sure Imple	ementation			Post-Control Measure Implementation				
Ref	Contributory/Qualitative Factors to Potential Peat Failure	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	Control Required	Control measures to be implemented during construction	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	
1	FOS = 2.19 (u), 3.06 (d)	1	4	4	Negligibie	No		1	4	4	Negligible	
2	Evidence of sub peat water flow	1	4	4	Negligible	No		1	4	4	Negligible	
3	Evidence of surface water flow	2	4	8	Low	No		2	4	8	Low	
4	Evidence of previous failures/slips	1	4	4	Negligible	No			4	4	Negligible	
5	Type of vegetation	1	4	4	Negligible	No		. 1	4	4	Negligibin	
6	General slope characteristics upslope/downslope from probe location	2	4	8	Low	No	See Below	2	4	8	Low	
7	Evidence of very soft/soft clay at base of peat	1	4	4	Negligible	No		1	4	4	Negligible	
8	Evidence of mechanically cut peat	1	4	4	Neglighte	No]	1	.4	4	Negligible	
9	Evidence of quaking or buoyant peat	1	4	4	Negligible	No		. 1	4	4	Negligible	
10	Evidence of bog pools	1	4	- 4	Negligible	No	1	1	4	4	Negligible	
11	Relatively deep peat	2	4	- 8	Low	No		2	4	8	Low	

	Control Measures to be Implemented Prior to/and During Rehabilitation Woks
Т	Maintain hydrology of area as far as possible;
	Assure appropriate supervision of the site is undertaken by the appointed contractor using suitably experienced personnel,
	Use of experienced contractors and trained operators to carry out the work;

- Note
 (1) FOS abbreviations are: u: FOS for undrained analysis, d: FOS for drained analysis.
 (2) Probability assessed as per Table A and B of Appendix E.
 (3) Impact based on distance of infrastructure element to nearest watercourse.

RHB ID:	GY27_HB001					
Grid Reference (Eastings, Northings):	N/A	N/A				
Distance to Watercourse (m)	< 50					
Min & Max Measured Peat Depth (m):	0.0 - 2.5					
Control Required:	Ye	15				

		Pre-	Control Mea	sure Imple	ementation		Control measures to be implemented during construction	Post-Control Measure Implementation				
Ref.	Ref. Contributory/Qualitative Factors to Potential Peat Failure	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	Control Required		Prob (Note 2)	impact (Note 3)	Risk	Risk Rating	
1	FOS = 1.40 (u), 0.79 (d)	5	4	20	regn	No		2	4	8	Low	
2	Evidence of sub peat water flow	1	4	4	Negligible	No	1	1	4	4	Negligible	
3	Evidence of surface water flow	2	4	8	Low	No	1	2	4	8	Law	
4	Evidence of previous failures/slips	1	- 4	4	Negligible	No	1	1	4	4	Negligible	
5	Type of vegetation	1	4	4	Negligible	No		1	4	4	Negligible	
6	General slope characteristics upslope/downslope from probe location	2	4	8	Low	No	See Below	2	4	8	Low	
7	Evidence of very soft/soft day at base of peat	1	4	4	Tengligibre	No		1	4	4	Nephphie	
8	Evidence of mechanically cut peat	(4)	4	4	Negligible	No		1	4	4	Negligible	
9	Evidence of quaking or buoyant peat	1	4	4	Negligible	No		1	4	4	Negligible	
10	Evidence of bog pools	1	4	4	Negligible	No		1	4	4	Negligible	
11	Relatively deep peat	2	- 4	8	Low	No		2	- 4	В	Low	

	Maintain hydrology of area as far as possible
	Post works monitoring of the site be undertaken by experienced geotechnical staff over a period of no less than 12 months;
	Use of experienced geotechnical staff for supervision of the proposed works;
	Use of experienced contractors and trained operators to carry out the work,
,	A FOS of 0.79 was calculated at peat probe location PP029 assuming 100% water level. When recalculated at 50% water level (conservative value) the
	drained FOS increased from 0.79 to 1.88. As a result it is anticipated that the risk of peat instability is negligible. However, due to the initial FOS result of <1
	It is recommended that post works monitoring be undertaken by experienced geolechnical staff over a period of no less than 12 months:

- Note
 (1) FOS abbreviations are: u: FOS for undrained analysis, d: FOS for drained analysis
 (2) Probability assessed as per Table A and B of Appendix E.
 (3) Impact based on distance of infrastructure element to nearest watercourse.

RHB ID:	GY27_HB0013					
Grid Reference (Eastings, Northings):	N/A	N/A				
Distance to Watercourse (m)	<	50				
Min & Max Measured Peat Depth (m):	0.0 - 0.7					
Control Required:	Y	es				

		Pre-Control Measure Implementation		Post-Control Measure Implementation							
Ref.	Contributory/Qualitative Factors to Potential Peat Failure	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	Control Required	Control measures to be implemented during construction	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating
1	FOS = 1.45 (u), 1.16 (d)	3	4	12	Medium	No		2	4	8	Low
2	Evidence of sub peat water flow	. 1	4	4	Negligible	No		1.1	4	4	Negligible
3	Evidence of surface water flow	2	4	. 8	Low	No		2	4	8	Low
4	Evidence of previous failures/slips	1	4	4	Negligible	No		- 1	4	4	Negligible
5	Type of vegetation	1	4	4	Negligible	No		- 1	4	4	Negligible
6	General slope characteristics upsiope/downslope from probe location	2	4	8	Low	No	See Below	2	4	8	Low
7	Evidence of very soft/soft clay at base of peat	1	4	4	Negligible	No		1	4	4	Negligible
8	Evidence of mechanically cut peat	1	4	4	Ninglijskie	No		1	4	4	Neglytie
9	Evidence of quaking or buoyant peat	1	4	4	Negligible	No		1	4	4	Negligible
10	Evidence of bog pools	1	4	4.	Negligible	No]	1	4	4	Negligible
11	Relatively deep peat	1	4	4	Negligible	No		1	-4	4	Neglighte

	Control Measures to be implemented Prior to and During Rehabilitation Woks
_	Maintain hydrology of area as far as possible.
	Post works monitoring of the site be undertaken by experienced geotechnical staff over a period of no less than 12 months;
	Use of experienced geotechnical staff for supervision of the proposed works;
¢.:	Use of experienced contractors and trained operators to carry out the work;
v	A FOS of 1.16 was calculated at peat probe location PP023 assuming 100% water level. When recalculated at 50% water level (conservative value) the
	drained FOS increased from 1.15 to 1.36. As a result it is anticipated that the risk of peat instability is negligible.

- Note

 (1) FOS abbreviations are: u: FOS for undrained analysis, d: FOS for drained analysis.
 (2) Probability assessed as per Table A and B of Appendix E.
 (3) Impact based on distance of infrastructure element to nearest watercourse.

RHB ID:	GY27_HB001				
Grid Reference (Eastings, Northings):	N/A	N/A			
Distance to Watercourse (m)	< !	50			
Min & Max Measured Peat Depth (m):	0.1 - 2.0				
Control Required:	No				

		Pre-	Control Mea	sure Impli	ementation	Control Required	Control measures to be implemented during construction	Post-Control Measure Implementation			
Ref.	Contributory/Qualitative Factors to Potential Peat Failure	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating			Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating
1	FOS = 2.83 (u), 2.30 (d)	1	4	4	Negligible	No		1	4	. 4	Negligible
2	Evidence of sub peat water flow	. 1	4	4	Negligible	No	1	1	4	4	Negligible
3	Evidence of surface water flow	2	4	8	Low	No]	2	4	8	Low
4	Evidence of previous failures/slips	- 31	4	.4	Negligible	No		7	4	4	Negligible
5	Type of vegetation	1	4	4	Negligible	No		1.	4	-4	Negligible
6	General slope characteristics upslope/downslope from probe location	1	4	4	Negligible	No	See Below	1	4	4	Negligible
7	Evidence of very soft/soft day at base of peat	1	4	4	Negligibin	No		1	(4)	4	Neglgble
8	Evidence of mechanically cut peat	(1	4	4	Negligible	No		31	4	4	Neglgible
9	Evidence of quaking or buoyant peat	3	4	4	Negligibio	No		1	4	4	Neglighte
10	Evidence of bog pools	1	4	4	Negligible	No		1	4	4	Negligible
11	Relatively deep peat.	2	4	. 8	Low	No		2	4	. 8	Low

Maintain hydrology of area as far as possible,
Assure appropriate supervision of the site is undertaken by the appointed contractor using suitably experienced personnel;
Use of experienced contractors and trained operators to carry out the work:
20 Annual Sandrack (St. 1900) (Sandrack (St. 1907) (Sandrack (Sandrack (St. 1907) (Sandrack (St. 1907) (Sandrack (St. 1907) (Sandrack (Sandrack (St. 1907) (Sandrack (St. 1907) (Sandrack (Sandrack (St. 1907) (Sandrack (St. 1907) (Sandrack (Sandrack (St. 1907) (Sandrack (Sandrack (Sandrack (St. 1907) (Sandrack (Sand

GALWAY COUNTY COUNCIL 53 EEE 5053 0 0 0 0 NOILOGS P22,263 Derryctane Peatland Rehabilitation - Peat Stability Risk Register (Rev 0)

RHB ID:	GY27_HB001				
Grid Reference (Eastings, Northings):	N/A	N/A			
Distance to Watercourse (m)	<	< 50			
Min & Max Measured Peat Depth (m):	0.1	0.1 - 1.5			
Control Required:	No				

		Pre	Control Mea	sure Imple	ementation	Control Required	Control measures to be implemented during construction	Post-Control Measure Implementation			
Ref.	Contributory/Qualitative Factors to Potential Peat Failure	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating			Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating
1	FOS = 2.34 (u). 1.56 (d)	1	4	4	Negligible	No		1	4	4	Neglgble
2	Evidence of sub peat water flow	1	4	4	Negligible	No		1	4	4	Negligibie
3	Evidence of surface water flow	2	4	8	Liw	No		2	4	8	Low
4	Evidence of previous failures/slips	- 1	4	4	Negligible -	No		1	4	4	Negligitin
5	Type of vegetation	- (1	4	4	Negligible	No		1	4	4	Negligible
6	General slope characteristics upslope/downslope from probe location	1	4	4	tengligible	No	See Below	1	4	4	Negligible
7	Evidence of very soft/soft clay at base of peat	- 1	4	4	Ningkphile	No		1	4	4	Negligible
8	Evidence of mechanically cut peat	- 1	4	4	Negligible	No		.1	4	4	Negligible
9	Evidence of quaking or buoyant peat	- 3	4:	4	Negligible	No		1	4	4	Negligible
10	Evidence of bog pools	1	4	4	Neglgble	No]	. 1	4	4	Negligible
11	Relatively deep peat	1	4	4	Negligible	No		- 1	4	4	Negligible

	Control Measures to be implemented Prior toland During Rehabilitation Woks
_	Maintain hydrology of area as far as possible;
	Assure appropriate supervision of the site is undertaken by the appointed contractor using suitably experienced personnel;
	Use of experienced contractors and trained operators to carry out the work;

- Note
 (1) FOS abbreviations are: u: FOS for undrained analysis, d: FOS for drained analysis.
 (2) Probability assessed as per Table A and B of Appendix E.
 (3) Impact based on distance of infrastructure element to nearest watercourse.

RHB ID:	GY27_HB0016				
Grid Reference (Eastings, Northings):	N/A	N/A			
Distance to Watercourse (m)	<	50			
Min & Max Measured Peat Depth (m):	0.1 - 1.7				
Control Required:	N.	10			

		Pre-	Control Mea	sure Impl	ementation			Post	-Control M	easure Im	plementation
Ref	Contributory/Qualitative Factors to Potential Peat Failure	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	Control Required	Control measures to be implemented during construction	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating
1	FOS = 4.25 (u), 2.19 (d)	1	4	4	Negligible	No		1	-34	4	Negligible
2	Evidence of sub peat water flow	1	4	4	Negligible	No	1	1	- 4	4	Negligible
3	Evidence of surface water flow	2	4	8	Low	No	1	2	4	8	Low
4	Evidence of previous failures/slips	1	4	4	Negligible	No	1	. 1	4	4	Negligible
-5	Type of vegetation	1	- 4	4	Negligible	No		1	4	4	Negligible
6	General slope characteristics upslope/downslope from probe location	2	.4	8	Low	No	See Below	2	4	8	Low
7	Evidence of very soft/soft clay at base of peat	1.	4	4	Negligible	No		1	4	4.	Negligible
8	Evidence of mechanically cut peat	1	4	4	Neglgible	No		1	4	4	Neglybie
9	Evidence of quaking or buoyant peat	1	4	4	Negligible	No		1	4	4	Negligible
10	Evidence of bog pools	3	- 4	4	Negligible	No:]	1.	- 4	4	Negligible
11	Relatively deep peat	1	4	4	Negligitile	No		1	4	4	Negligible

Maintain hydrology of area as far as possible:
Assure appropriate supervision of the site is undertaken by the appointed contractor using suitably experienced personnel.
Use of experienced contractors and trained operators to carry out the work;

RHB ID:	GY27_HB0017				
Grid Reference (Eastings, Northings):	N/A	N/A			
Distance to Watercourse (m)	<	50			
Min & Max Measured Peat Depth (m):	0.0 - 0.20 No				
Control Required:					

		Pre-	Control Mea	sure Imple	mentation			Post	-Control M	easure Im	plementation
Ref.	Contributory/Qualitative Factors to Potential Peat Failure	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	Control Required	Control measures to be implemented during construction	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating
1	FOS = 2.40 (u), 1.92 (d)	1	4	4	Negligible	No		1	4	4	Negligible
2	Evidence of sub peat water flow	1	- 4	4	Negligible	No		.1	4	4	Negligible
3	Evidence of surface water flow	2	4	8	Low	No		2	4	8	Low
4	Evidence of previous failures/slips	1	4	4	Negligible	No		1	4	4	Negligible
5	Type of vegetation	1.	4	4	Negligible	No		1	4	4	Negligible
6	General slope characteristics upslope/downslope from probe location	1	4	4	Negligible	No	See Below	1	4	4	Neglijais
7	Evidence of very soft/soft clay at base of peat	1	4	4	Negligible	No		-1:	4	4	Negligible
8	Evidence of mechanically cut peat	1	4	.4	Negligible	No		2.1	4	- 4	Negligible
9	Evidence of quaking or buoyant peat	t	4	4	Negligibin	No		1	4	4	Negligible
10	Evidence of bog pools	1	4	4	Negląbie	No		1	4	4	Negligible
11	Relatively deep peat	1	4	4	Negligible	No		1	4	- 4	Negligible

Control Measures to be Implemented Prior to/and During Rehabilitation Woks	
Maintain hydrology of area as far as possible;	
Assure appropriate supervision of the site is undertaken by the appointed contractor using suitably experienced personnel;	
Use of experienced contractors and trained operators to carry out the work.	
	Assure appropriate supervision of the site is undertaken by the appointed contractor using suitably experienced personnel;

- Note

 (1) FOS abbreviations are: u: FOS for undrained analysis, d: FOS for drained analysis.
 (2) Probability assessed as per Table A and B of Appendix E.
 (3) Impact based on distance of infrastructure element to nearest watercourse.

RHB ID:	GY27_HB001			
Grid Reference (Eastings, Northings):	N/A	N/A		
Distance to Watercourse (m)	<	50		
Min & Max Measured Peat Depth (m):	0.2	- 0.4		
Control Required:	No			

		Pre	Control Mea	sure Impl	ementation			Pos	-Control M	easure Im	plementation
Ref.	Contributory/Qualitative Factors to Potential Peat Failure	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	Control Required	Control measures to be implemented during construction	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating
21	FOS = 5.18 (u), 4.44 (d)	1.	4	4	Negligible	No		1	4	4	Negligible
2	Evidence of sub peat water flow	1	4	- 4	Neglgole	No]	1	4	4	Negligible
3	Evidence of surface water flow	2	4	. 8	Low	No		2	4	8	Low
4	Evidence of previous failures/slips	1	4	-4	Negligible	No		1	4	4	Negligible
5	Type of vegetation	3	4	4	Negligible	No		1	4	4	Negligible
6	General slope characteristics upslope/downslope from probe location	2	4	8	Low	No	See Below	2	4	8	Low
7	Evidence of very soft/soft day at base of peat	1	4	4	Neglgble	No		1	4	4	Negligible
8	Evidence of mechanically out peat	1.	4	4	Negligible	No		10	4	4	Negligible
9	Evidence of quaking or buoyant peat	1	4	4	Negligible	No		1	4	4	Negligible
10	Evidence of bog pools	1.	4	4	Negligible	No		. 1	4	4	Negligible
11	Relatively deep peat	- 1	4	4	Negligible	No		. 10	- 4	4	Negligible

	Control Measures to be Implemented Prior toland During Rehabilitation Woks
ì	Maintain hydrology of area as far as possible;
	Assure appropriate supervision of the site is undertaken by the appointed contractor using suitably experienced personnel;
6	Use of experienced contractors and trained operators to carry out the work.
	Control and Art Control and Co

RHB ID:	GY27_HB0020				
Grid Reference (Eastings, Northings):	N/A	N/A			
Distance to Watercourse (m)	< !	50			
Min & Max Measured Peat Depth (m):	0.9 - 1.3				
Control Required:	No				

		Pre	Control Mea	sure Imple	ementation			Post	-Control M	easure im	plementation
Ref.	Contributory/Qualitative Factors to Potential Peat Failure	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	Control Required	Control measures to be implemented during construction	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating
1	FOS = 2.59 (u), 2.19 (d)	.1	-4	4	Negligible	No		1	- 4	4	Negligible
2	Evidence of sub peat water flow	. 1	4	4	Negligible	No		1	4	4	Negligible
3	Evidence of surface water flow	2	4	- 8	Low	No		2	4	8	Low
4	Evidence of previous failures/slips	1	4	4	Negligible	No	1	30_	4	4	Negligible
5	Type of vegetation	1	4	4	Neglijbie	No		1	4	4	Negligibin
6	General slope characteristics upslope/downslope from probe location	2	4	8	Low	No	See Below	2	4	8	Low
7	Evidence of very soft/soft clay at base of peal.	31	4	4	Negligible	No		1	4	4	Negligible
8	Evidence of mechanically cut peat	-1	4	:4	Negligible	No.	1	1	4	4	Negligible
9	Evidence of quaking or buoyant peat	- 1	4	4	Negligible	No		1	4	4	Negligible
10	Evidence of bog pools	1	4	4	Negligible	No	1	1	4	4	Negligible
11	Relatively deep peat	- 1	4	4	Negligible	No	1	1	4	4	Negligible

	Control Measures to be implemented Prior toland During Rehabilitation Woks
Т	Maintain hydrology of area as far as possible.
	Assure appropriate supervision of the site is undertaken by the appointed contractor using suitably experienced personnel;
	Use of experienced contractors and trained operators to carry out the work;

- Note
 (1) FOS abbreviations are: u: FOS for undrained analysis, d: FOS for drained analysis.
 (2) Probability assessed as per Table A and B of Appendix E.
 (3) Impact based on distance of infrastructure element to nearest watercourse.

RHB ID:	GY27_HB002				
Grid Reference (Eastings, Northings):	N/A	N/A			
Distance to Watercourse (m)	<	< 50			
Min & Max Measured Peat Depth (m):	0.2 - 3.3				
Control Required:	No				

	Contributory/Qualitative Factors to Potential Peat Failure	Pre	Control Mea	sure Imple	ementation			Post-Control Measure Implementation				
Ref.		Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	Control Required	Control measures to be implemented during construction	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	
1	FOS = 1.44 (u), 1.92 (d)	- 1	4	4	Negligible	No		- 1	4	4	Negligible	
2	Evidence of sub peat water flow	1	4	4	Negltyble	No	1	- 1	4	4	Negligible	
3	Evidence of surface water flow	2	4	8	Low	No	1	2	4	8	Low	
4	Evidence of previous failures/slips	1	4	4	Negligible	No		1	4	4	Negligible	
5	Type of vegetation	2	4	8	Low	No		1	4	4	Negligible	
6	General slope characteristics upslope/downslope from probe location	.1	4	4	Negligible	No	See Below	1	4	4	Negligible	
7	Evidence of very soft/soft day at base of peat	1	4	4	Negligitie	No		1	4	4	Negligible	
8	Evidence of mechanically out peat	1	4	4	Negligible	No		_1	4	4	Negligibin	
9	Evidence of quaking or buoyant peat	1	4	4	Negligible	No		1	4	4	Negligible	
10	Evidence of bog pools	্ৰ	4	4	Neglyble	No		_1	4	4	Neglytie	
11	Relatively deep peat	3	- 4	12	Medium	No		2	4	8	Low	

	Control Measures to be Implemented Prior to/and During Rehabilitation Woks
i.	Maintain hydrology of area as far as possible;
	Use of experienced geotechnical staff for supervision of the proposed works:
iv.	Use of experienced contractors and trained operators to carry out the work;
v.	Temporanty stabilise wet peat using stacked branches or trunks laid across the access routes.

GALWAY COUNTY COUNCIL 0 3 0 0 6 50 8 8 3 E 8 7

MONTO AVMINO

O 3 0 0 6 50 8 8 3 E 8 7

MONTO AVMINO

O 3 0 0 6 50 5 8 3 E 8 7

MONTO AVMINO

O 3 0 0 6 50 5 8 3 E 8 7

MONTO AVMINO

O 3 0 0 6 50 5 8 3 E 8 7

MONTO AVMINO

O 3 0 0 6 50 5 8 3 E 8 7

MONTO AVMINO

O 3 0 0 6 50 5 8 3 E 8 7

MONTO AVMINO

O 3 0 0 6 50 5 8 3 E 8 7

MONTO AVMINO

O 3 0 0 6 50 5 8 3 E 8 7

MONTO AVMINO

O 3 0 0 6 50 5 8 3 E 8 7

MONTO AVMINO

O 3 0 0 6 50 5 8 3 E 8 7

MONTO AVMINO

O 3 0 0 6 50 5 8 3 E 8 7

MONTO AVMINO

O 3 0 0 6 50 5 8 3 E 8 7

MONTO AVMINO

O 3 0 0 6 50 5 8 3 E 8 7

MONTO AVMINO

O 3 0 0 6 50 5 8 5 E 8 7

MONTO AVMINO

O 3 0 0 6 50 5 E 8 7

MONTO AVMINO

O 3 0 0 6 50 5 E 8 7

MONTO AVMINO

O 3 0 0 6 50 5 E 8 7

MONTO AVMINO

O 3 0 0 6 50 5 E 8 7

MONTO AVMINO

O 3 0 0 6 50 5 E 8 7

O 3 0 0 6 50 5 E 8 7

O 3 0 0 6 50 5 E 8 7

O 3 0 0 6 50 5 E 8 7

O 3 0 0 6 50 5 E 8 7

O 3 0 0 6 50 5 E 8 7

O 3 0 0 6 50 5 E 8 7

O 3 0 0 6 50 5 E 8 7

O 3 0 0 6 50 5 E 8 7

O 3 0 0 6 50 5 E 8 7

O 3 0 0 6 50 5 E 8 7

O 3 0 0 6 50 5 E 8 7

O 3 0 0 6 50 5 E 8 7

O 3 0 0 6 50 5 E 8 7

O 3 0 0 6 50 5 E 8 7

O 3 0 0 6 50 5 E 8 7

O 3 0 0 6 50 5 E 8 7

O 3 0 0 6 50 5 E 8 7

O 3 0 0 6 50 5 E 8 7

O 3 0 0 6 50 5 E 8 7

O 3 0 0 6 50 5 E 8 7

O 3 0 0 6 50 5 E 8 7

O 3 0 0 6 50 5 E 8 7

O 3 0 0 6 50 5 E 8 7

O 3 0 0 6 50 5 E 8 7

O 3 0 0 6 50 5 E 8 7

O 3 0 0 6 50 5 E 8 7

O 3 0 0 6 50 5 E 8 7

O 3 0 0 6 50 5 E 8 7

O 3 0 0 6 50 5 E 8 7

O 3 0 0 6 50 5 E 8 7

O 3 0 0 6 50 5 E 8 7

O 3 0 0 6 50 5 E 8 7

O 3 0 0 6 50 5 E 8 7

O 3 0 0 6 50 5 E 8 7

O 3 0 0 6 50 5 E 8 7

O 3 0 0 6 50 5 E 8 7

O 3 0 0 6 50 5 E 8 7

O 3 0 0 6 50 5 E 8 7

O 3 0 0 6 50 5 E 8 7

O 3 0 0 6 50 5 E 8 7

O 3 0 0 6 50 5 E 8 7

O 3 0 0 6 50 5 E 8 7

O 3 0 0 6 50 5 E 8 7

O 3 0 0 6 50 5 E 8 7

O 3 0 0 6 50 5 E 8 7

O 3 0 0 6 50 5 E 8 7

O 3 0 0 6 50 5 E 8 7

O 3 0 0 6 50 5 E 8 7

O 3 0 0 6 50 5 E 8 7

O 3 0 0 6 50 5 E 8 7

O 3 0 0 6 50 5 E 8 7

O 3 0 0 6 50 5 E 8 7

O 3 0 0 6 50 5 E 8 7

O 3 0 0 0 6 5 E 8 7

O 3 0 0 0 6 5 E 8 7

O 3 0 0 0 6 E 8 7

O 3 0 0 0 0 0 0 0 0

O 3 0 0 0 0 0 0 0 0

O 3 0 0 0 0

RHB ID:	GY27_HB0022				
Grid Reference (Eastings, Northings):	N/A	N/A			
Distance to Watercourse (m)	<	50			
Min & Max Measured Peat Depth (m):	0.1	- 1.4			
Control Required:		10			

		Pre-	Control Mea	sure Imple	ementation			Post	-Control M	easure Im	plementation
Ref.	Contributory/Qualitative Factors to Potential Peat Failure	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	Control Required	Control measures to be implemented during construction	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating
1	FOS = 1.92 (u), 2.39 (d)	-1	4	4	Negligible	No			4	0	Not Applicable
2	Evidence of sub peat water flow	1	4	4	Neglgble	No		= 1	4	0	Not Applicable
3	Evidence of surface water flow	2	4	8	Low	No			4	0	Not Applicable
4	Evidence of previous failures/slips	1	4	4	Negligible	No:			4	0	Not Applicable
5	Type of vegetation	1	4	4	Neglighte	No:]		4	0	Not Applicable
6	General slope characteristics upslope/downslope from probe location	3	4	4	Negligibin	No	See Below		4	0	Not Applicable
7	Evidence of very soft/soft clay at base of peat	1	.4	4	Negligible	No			4	0	Not Applicable
8	Evidence of mechanically cut peat	-1	4	4	Negligible	No:			- 4	0	Not Applicable
9	Evidence of quaking or buoyant peat	1	4	4	Negloble	No	1		4	0	Not Applicable
10	Evidence of bog pools	.1	4	4	Negligible	No			4	0	Not Applicable
11	Relatively deep peal	1	4	4	Negligible	No			4	0	Not Applicable

Control Measures to be Implemented Prior to/and During Rehabilitation Woks	
Maintain hydrology of area as far as possible:	
Assure appropriate supervision of the site is undertaken by the appointed contractor using suitably experienced personnel;	
Use of experienced confractors and trained operators to carry out the work;	
1	
I .	
I .	
1	
1	
1	
1	
1	
1	
1	

- Note
 (1) FOS abbreviations are: u FOS for undrained analysis, d: FOS for drained analysis.
 (2) Probability assessed as per Table A and B of Appendix E.
 (3) Impact based on distance of infrastructure element to nearest watercourse.

RHB ID:	GY27_HB0023				
Grid Reference (Eastings, Northings):	N/A	N/A			
Distance to Watercourse (m)	<	50			
Min & Max Measured Peat Depth (m):	0	.9			
Control Required:	No				

	Contributory/Qualitative Factors to Potential Peat Failure	Pre	Control Mea	sure Impl	ementation	Control Required	Control measures to be implemented during construction	Post-Control Measure Implementation				
Ref.		Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating			Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	
1	FOS = 4.03 (u), 8.50 (d)	1	4	4	Negligibie	No		1	4	4	Negligible	
2	Evidence of sub peat water flow	1	4	4	Negligible	No		1	4	4	Negligible	
3	Evidence of surface water flow	2	4	8	Low	No		2	4	8	Low	
4	Evidence of previous failures/slips	1	4	4	Negligible	No	1	1	4	4	Negligible	
5	Type of vegetation	1	4	4	Negligible	No		1	4	4	Negligible	
6	General slope characteristics upslope/downslope from probe location	1	4	4	Negligibie	No	See Below	1	4	4	Negligibie	
7	Evidence of very soft/soft clay at base of peat	1	4	4	Negligitim	No		1	4	4	Nigligible	
8	Evidence of mechanically cut peat	1	. 4	4	Negligible	No		1	4	4	Negligible	
9	Evidence of quaking or buoyant peat	1	-4	4.	Negligibio	No		1	4	4	Negligible	
10	Evidence of bog pools	1	4	4	Negligible	No		1	4	4	Negligase	
11	Relatively deep peat	1	- 4	- 4	Negligible	No	1	1	- 4	4	Negligible	

	Control Measures to be Implemented Prior to and During Rehabilitation Woks
1	Maintain hydrology of area as far as possible;
#	Assure appropriate supervision of the site is undertaken by the appointed contractor using suitably experienced personnel;
m	Use of experienced contractors and trained operators to carry out the work;
	Section (Anna Section Control

- Note
 (1) FOS abbreviations are: u: FOS for undrained analysis, d: FOS for drained analysis.
 (2) Probability assessed as per Table A and B of Appendix E.
 (3) Impact based on distance of infrastructure element to nearest watercourse.

CALMAN COUNTY COUNCIL

S 3 LEB 5053 0 0 0 0

RHB ID:	GY27_HB0024				
Grid Reference (Eastings, Northings):	N/A	N/A			
Distance to Watercourse (m)	<	50			
Min & Max Measured Peat Depth (m):	0.2 - 2.4				
Control Required:	No				

		Pre	Control Mea	sure Imple	ementation			Post	-Control M	easure im	plementation
Ref.	Contributory/Qualitative Factors to Potential Peat Failure	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	Control Required	Control measures to be implemented during construction	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating
1	FOS = 3.82 (u), 4.15 (d)	1	4	4	Neglgibin	No		- 1	4	4	Negligible
2	Evidence of sub peat water flow	1	4	4	Negligible	No		. 1	4	4	Negligible
3	Evidence of surface water flow	2	4	8	Low	No		2	4	8	Low
4:	Evidence of previous failures/slips	1	4	4	Negligible	No		- 1	4	4	Negligible
5	Type of vegetation	- 1	4	4	Negligitie	No		. 1	4	4	Negligible
6	General slope characteristics upslope/downslope from probe location	2	4	8	Line	No	See Below	2	:4	8	Line
7	Evidence of very soft/soft day at base of peat	1	4	4	Negligible	No		1	4	4	Negligible
8	Evidence of mechanically cut peat	1	4	4	Negliptile	No]	1	4	4	Negligible
9	Evidence of quaking or buoyant peat	1	4	4	Negligible	No		1	4	4	Negligible
10	Evidence of bog pools	. 1	4	4	Negligible	No.]	1	4	4	Nogligible
11	Relatively deep peat	- 1	4	4	Negligible	No		1	4	4	Negligible

8 98
Maintain hydrology of area as far as possible;
Assure appropriate supervision of the site is undertaken by the appointed contractor using suitably experienced personnel.
Use of experienced contractors and trained operators to carry out the work:
- A - A - A - A - A - A - A - A - A - A

- Note
 (1) FOS abbreviations are: u: FOS for undrained analysis, d: FOS for drained analysis.
 (2) Probability assessed as per Table A and B of Appendix E.
 (3) Impact based on distance of infrastructure element to nearest watercourse.

RHB ID:	GY27_HB0027				
Grid Reference (Eastings, Northings):	N/A	N/A			
Distance to Watercourse (m)	<	50			
Min & Max Measured Peat Depth (m):	0.4 - 4.0				
Control Required:	No				

		Pre	Control Mea	sure Impl	ementation			Pos	t-Control M	easure Im	plementation
Ref.	Contributory/Qualitative Factors to Potential Peat Failure	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	Control Required	Control measures to be implemented during construction	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating
1	FOS = 2.29 (u), 3.28 (d)	-1	4	. 4	Negligible	No		1	4	4	Negligible
2	Evidence of sub peat water flow	3.	4	4	Negligible	No		1	4	4	Negligible
3	Evidence of surface water flow	2	4	8	Low	No	1	2	4	8	Low
4	Evidence of previous failures/slips	1	4	4	Neglighte	No	1	1	4	4	Negligible
5	Type of vegetation	2	4	8	Low	No	1	2	4	8	Low
6	General slope characteristics upslope/downslope from probe location	2	:4	8	Low	No	See Below	2	4	8.	Low
7	Evidence of very soft/soft clay at base of peat	3	4	4	Neglighte	No	1	1	4	4	Negligible
8	Evidence of mechanically cut peat	1	. 4	4	Negligibis	No		- 1	4	4	Negligible
9	Evidence of quaking or buoyant peat	- 1	4	4	Negligible	No		1	4	4	Neglijitë
10	Evidence of bog pools	1	.4	4	Negligibie	No	1	-1	4	4	Negligible
11	Relatively deep peat	4	4	16	Medium	No		2	4	8	Low

	Control Measures to be Implemented Prior toland During Rehabilitation Woks
l	Maintain hydrology of area as far as possible:
ı,	Use of experienced geotechnical staff for supervision of the proposed works,
0	Use of experienced contractors and trained operators to carry out the work;
	Temporarily stabilise wet peat using stacked branches or trunks laid across the access routes.
	— And Colds — Address (Colds Colds Colds (Colds Colds

RHB ID:	GY27_HB0028				
Grid Reference (Eastings, Northings):	N/A	N/A			
Distance to Watercourse (m)	<	50			
Min & Max Measured Peat Depth (m):	0.3 - 3.1				
Control Required:	No				

		Pre-	Control Mea	sure Imple	mentation			Post	-Control M	easure Im	plementation
Ref	Contributory/Qualitative Factors to Potential Peat Failure	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	Control Required	Control measures to be implemented during construction	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating
1	FOS = 1.83 (u), 1.06 (d)	3	4	12	Medium	No		2	4	8	Low
2	Evidence of sub peat water flow	1	4	4	Negligible	No		1	4	4	Negligible
3	Evidence of surface water flow	2	4	8	Low	No.		2	4	8	Low
4	Evidence of previous failures/slips	1	4	4	Negligibis	No		-1	4	4	Negligible
5	Type of vegetation	1	4	4	Neglighie	No	1	1	4	4	Negligible
6	General slope characteristics upslope/downslope from probe location	2	4	8	Low	No	See Below	2	4	8	Low
7	Evidence of very soft/soft clay at base of pest	1.	4	4	Negligible	No		1.	4	4	Negligible
8	Evidence of mechanically cut peat	1	4	4	Neglytik	No	1	1	4	4	Negligible
9	Evidence of quaking or buoyant peat	1	4	4	Negligibin	No		1	4	4	Negligible
10	Evidence of bog pools	10	4	4	Negligitie	No		1	4	4	Negligible
11	Relatively deep peat	3	4	12	Medium	No		2	4	- 8	Low

	Control Measures to be Implemented Prior to/and During Rehabilitation Woks
	Maintain hydrology of area as far as possible;
ŭ.	Post works monitoring of the site be undertaken by experienced geotechnical staff over a period of no less than 12 months;
	Use of experienced geotechnical staff for supervision of the proposed works,
w	Use of experienced contractors and trained operators to carry out the work;
v	Temporarily stabilise wet peat using stacked branches or trunks laid across the access routes.
	A FOS of 1.06 (d) was calculated at pest probe location PP023 assuming 100% water level. When recalculated at 50% water level (conservative value) the
	drained FOS increased from 1.05 to 2.39. As a result it is anticipated that the risk of peat instability is negligible.

- Note

 (1) FOS abbreviations are: u: FOS for undrained analysis, d: FOS for drained analysis.

 (2) Probability assessed as per Table A and B of Appendix E.

 (3) Impact based on distance of infrastructure element to nearest watercourse.

RHB ID:	GY27_HB0029				
Grid Reference (Eastings, Northings):	N/A	N/A			
Distance to Watercourse (m)	<	50			
Min & Max Measured Peat Depth (m):	0.0 - 0.7				
Control Required:	No				

		Pre-	Control Mea	sure Imple	ementation			Pos	t-Control M	easure Im	plementation
Ref	Contributory/Qualitative Factors to Potential Peat Failure	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	Control Required	Control measures to be implemented during construction	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating
1	FOS = 2.22 (u), 1.84 (d)	1	4	4	Negligible	No		1	4	4	Negligible
2	Evidence of sub-peat water flow	1	4	4	Negligible	No		1	4	4	Negligible
3	Evidence of surface water flow	2	4	8	LOW	No		2	4	8	Low
4	Evidence of previous failures/slips	1	4	4	Negligible	No		1	4	4	Negligible
5	Type of vegetation	1	4	4	Negligible	No		1	4	4	Negligible
6	General slope characteristics upslope/downslope from probe location	2	.4	8	Low	No	See Below	2	4	8	Low
7	Evidence of very soft/soft day at base of peat	1	4	4	Negligible	No		1	4	4	Negligible
8	Evidence of mechanically cut peat	- 1	4	4	Negligbie	No		1	. 4	4	Negligibie
9	Evidence of quaking or buoyant peat	1	4	4	Negligible	No		. 1	4	4	Negligible
10	Evidence of bog pools	1	14	4	Negligible	No		1	4	4	Negligibie
11	Relatively deep peat	1	4	4	Negligible	No		1	4	4	Negligible

	Control Measures to be Implemented Prior toland During Rehabilitation Woks
Π	Maintain hydrology of area as far as possible;
	Assure appropriate supervision of the site is undertaken by the appointed contractor using suitably experienced personnel;
	Use of experienced contractors and trained operators to carry out the work,

NOIJO RHB ID: Orid Reference (Fastings, Northings): Distance to <u>WaterCourse (m)</u> Min & Max Measured Peat Depth (m): N/A N/A 1.4 Control Required:

		Pre-	Control Mea	sure Imple	ementation			Post	-Control M	easure Im	plementation	
Ref	Contributory/Qualitative Factors to Potential Peat Failure	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	Control Required	Control measures to be implemented during construction	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	
1.	FOS = 3.02 (u), 2.07 (d)	.1	4	- 4	Negligible	No		1	4	4	Negligible	
2	Evidence of sub peat water flow	1	4	4	Neglyble	No		1	4	4	Negligible	
3	Evidence of surface water flow	2	4	8	Low	No		2	4	. 6	Low	
4	Evidence of previous failures/slips	1	4	- 4	Negligible .	No		. 1	4	4	Negligible	
5	Type of vegetation	2	4	8	Low	No		2	4	8	Low	
6	General slope characteristics upslope/downslope from probe location	2	4	8	Low	No	See Below	2	4	8	Low	
7:	Evidence of very soft/soft clay at base of peat	- 3	4	.4	Negligible	No			1	4	4	Ninglighte
8	Evidence of mechanically cut peat	1	- 4	4	Negligible	No .]	. 1	4	4	Negligible	
9	Evidence of quaking or buoyant peat	21	4	- 4	Negigible	No		1	4	4	Negligible	
10	Evidence of bog pools	1	4	- 4	Negligitie	No	1	- 1	4	4	Negligible	
11	Relatively deep peat	1	4	4	Negligible	No		1	4	4	Negligible	

	Control Measures to be Implemented Prior to and During Rehabilitation Woks							
,	Maintain hydrology of area as far as possible;							
¥.	Assure appropriate supervision of the site is undertaken by the appointed contractor using suitably experienced personnel;							
H.	Use of experienced contractors and trained operators to carry out the work,							

- Note
 (1) FOS abbreviations are: u: FOS for undrained analysis, d: FOS for drained analysis.
 (2) Probability assessed as per Table A and B of Appendix E.
 (3) Impact based on distance of infrastructure element to nearest watercourse.

Location:	GY27R0025	5
Grid Reference (Eastings, Northings):	Varies	
Distance to Watercourse (m)	< 50	
Min & Max Measured Peat Depth (m):	0.0- 2.8	
Control Required:	No	

		Pre-	Control Mea	sure Impli	ementation			Pos	-Control M	easure Im	plementation
Ref.	Contributory/Qualitative Factors to Potential Peat Failure	Prob (Note 2)	Impact (Note 3)	Rink	Risk Rating	Control Required	Control measures to be implemented during construction	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating
1	FOS = 2.00 (u), 1.64 (d)	1	- 4	- 4	Negligible	No		1	4	4	Negligible
2	Evidence of sub peat water flow	t	4	4	Nogligitio	No	1	1	4	4	Negligible
3	Evidence of surface water flow	2	4	8	E.com	No	1	2	4	8	Low
4	Evidence of previous failures/slips	1	4	4	Negligible	No	1	1	4	4	Negligibin
5	Type of vegetation	- 1	4	- 4	Negligible	No		- 1	4	4	Negtgible
6	General slope characteristics upslope/downslope from probe location	2	4	8	Low	No	See Below	2	4	8	Low
7	Evidence of very soft/soft clay at base of peat	1	4	4	Negligibis	No		1	4	4	Negligibio
8	Evidence of mechanically cut peat	1	- 4	4	Negligitie	No		1	4	4	Negligible
9	Evidence of quaking or buoyant peat	1	4	4	Negligibis	No		1	4	4	Negligitie
10	Evidence of bog pools	- 1	- 4	4	Negligible	No		1	4	4	Negligitie
.11	Relatively deep peat	1	4	4	Negligitae	No		1	. 4	4	Negligible

_	
1	Maintain hydrology of area as far as possible,
4	Assure appropriate supervision of the site is undertaken by the appointed contractor using suitably experienced personnel;
#	Use of experienced contractors and trained operators to carry out the work;

- Note
 (1) FOS abbreviations are: u: FOS for undrained analysis, d: FOS for drained analysis.
 (2) Probability assessed as per Table A and B of Appendix D in PSA.
 (3) Impact based on distance of infrastructure element to ne

GY27R0026

Grid Refe	ax Measured Peat Depth (m):	Var < ! 0.0 - N	0.3								
	. /[Pre-	Control Mea	sure Imple	mentation	1		Post	-Control M	easure Im	plementation
NEV Ret	Controllory 9 NINNY to Controllory Quantitative Factors to Potential Peat Failure	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	Control Required	Control measures to be implemented during construction	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating
1	FOS = 6.12 (u), 5.92 (d)	1	4	4	Negligible	No		1	4	4	Negligible
2	Evidence of sub peat water flow	1	4	.4	Negligible	No	1	1	4	4	Negligible
3	Evidence of surface water flow	2	4	8	Low	No		2	4	8	Low
4	Evidence of previous failures/slips	1	4	4	Negligible	No	1	. 1	4	4	Negligible
5	Type of vegetation	_1	4	4	Negligible	No	1	- 1	4	4	Negligible
6	General slope characteristics upslope/downslope from probe location	2	4	8	Low	No	See Below	2	4	8	Low
7	Evidence of very soft/soft day at base of peat	1	4	4	Negligible	No		3	4	4	Negligible
8	Evidence of mechanically cut peat	1	4	4	Negligibia	No		1	4	4	Negligible
9	Evidence of quaking or buoyant peat	1	4	4	Negligible	No		- 1	4	4	Negligible
10	Evidence of bog pools	1	4	4	Negligible	No		- 1	4	4	Neglighie
11	Relatively deep peat	1	4	4	Negligible	No		- 1	4	4	Negleptio

	Control Measures to be Implemented Prior to/and During Rehabilitation Woks
	Maintain hydrology of area as far as possible;
н	Assure appropriate supervision of the site is undertaken by the appointed contractor using suitably experienced personnel.
	Use of expenienced contractors and trained operators to carry out the work;

Lecation:

- Note

 (1) FOS abbreviations are: u: FOS for undrained analysis, d: FOS for drained analysis.
 (2) Probability assessed as per Table A and B of Appendix D in PSA.

 (3) Impact based on distance of infrastructure element to nearest watercourse.

Location:	GY27R002
Grid Reference (Eastings, Northings):	Varies
Distance to Watercourse (m)	< 50
Min & Max Measured Peat Depth (m):	0.0 - 1.4
Control Required:	No .

		Pre-	Control Mea	sure Imple	mentation			Post-Control Measure Implementation				
Ref.	Contributory/Qualitative Factors to Potential Peat Failure	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	Control Required	Control measures to be implemented during construction	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	
+	FOS = 2.22 (u), 1.84 (d)	1	4	4	Nigighte	No		1	4	4	Negligible	
2	Evidence of sub peat water flow	1	- 4	4	Nugligible	No		1	4	4	Negligible	
3	Evidence of surface water flow	2	4	8	Low	No		2	4	8	Low	
4	Evidence of previous failures/slips	1	4	4	Negligible	No		- 3	4	4	Negligible	
5	Type of vegetation	2	4	8	Low	No		2	4	8	Los	
6	General slope characteristics upslope/downslope from probe location	2	4	8	Lee	No	See Below	2	4	8	Low	
7	Evidence of very soft/soft day at base of peat	1.	4	4	Negligible	No		1	4	4	Negligible	
8	Evidence of mechanically cut peat	1	4	4	Negligitie	No		-1	4	4	Negligible	
9	Evidence of quaking or buoyant peat	1	4	4	Negligible	No		.1	4	4	Negligible	
10	Evidence of bog pools	1.	4	- 4	Negliphie	No		1	4	4	Nopigble	
11	Relatively deep peat	1	4	4	Negligible	No		.1	4	.4	Negligible	

Control Measures to be Implemented Prior toland During Rehabilitation Woks
Maintain hydrology of area as far as possible:
Assure appropriate supervision of the site is undertaken by the appointed contractor using suitably experienced personnel:
Use of experienced contractors and trained operators to carry out the work.

- Note

 (1) FOS abbreviations are: u: FOS for undrained analysis, d: FOS for drained analysis.

 (2) Probability assessed as per Table A and B of Appendix D in PSA.

 (3) Impact based on distance of infrastructure element to nearest watercourse.

Location:	GY27R00
Grid Reference (Eastings, Northings):	Varies
Distance to Watercourse (m)	< 50
Min & Max Measured Peat Depth (m):	0.0 - 0.8
Control Required:	No

		Pre	Control Mea	sure Impl	ementation			Pos	-Control M	easure Im	plementation
Ref	Contributory/Qualitative Factors to Potential Peat Failure	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	Control Required	Control measures to be implemented during construction	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating
1	FOS = 2.73 (u), 4.25 (d)	1	4	4	Negligible	No		1	4	4	Negligible
2	Evidence of sub peat water flow	1	4	4	Negligible	No	1	1	4	4	Negligibie
3	Evidence of surface water flow	2	4	8	Litw.	No	1	2	4	8	Low
4	Evidence of previous failures/slips	1	4	4	Negligibis	No	1	1	4	4	Negligible
5	Type of vegetation	2	4	8	Low	No	1	2	4	8	Low
6	General slope characteristics upslope/downslope from probe location	2	4	8	Low	No	See Below	2	4	8	Low
7	Evidence of very soft/soft clay at base of peat	1	4	4	Neglighie	No		1	4	4	Negligible
8	Evidence of mechanically cut peat	1	4	4	Negligible	No	1	-1	4	4	Negligible
9	Evidence of quaking or buoyant peat	1	4	4	Negligible	No	1	1	4	4	Negligible
10	Evidence of bog pools	1	4	4	Ninglightin	No		1	4	4	Negligibie
11	Relatively deep peat	-1	4	4	Negligibis	No	1	-	4		Neglightie

	Control Measures to be Implemented Prior toland During Rehabilitation Woks
,	Maintain hydrology of area as far as possible;
i	Assure appropriate supervision of the site is undertaken by the appointed contractor using suitably experienced personnel;
i	Use of experienced contractors and trained operators to carry out the work;
	1

- Note

 (1) FOS abbreviations are: u: FOS for undrained analysis, d: FOS for drained analysis.

 (2) Probability assessed as per Table A and B of Appendix D in PSA.

 (3) Impact based on distance of infrastructure element to nearest watercourse.

Location:	GY27R00
Grid Reference (Eastings, Northings):	Varies
Distance to Watercourse (m)	< 50
Min & Max Measured Peat Depth (m):	0.0
Control Required:	No

		Pre-	Control Mea	sure Impl	ementation			Pos	-Control M	easure Im	plementation
Ref.	Contributory/Qualitative Factors to Potential Peat Failure	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	Control Required	Control measures to be implemented during construction	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating
1	FOS = N/A (no peat)	1	4	4	Negligible	No		1	4	4	Negligible
2	Evidence of sub-peat water flow	1	4	4:	Negligible	No]	1.	4	4	Negligible
3	Evidence of surface water flow	2	4	a	Low	No]	2	4	8	Low
4	Evidence of previous failures/slips	t	. 4	4	Negligible	No		- 1	4	4	Neglgible
5	Type of vegetation	2	4	8	Low	No		2	- 4	8	Low
6	General slope characteristics upslope/downslope from probe location	2	4	8	Low	No	See Below	2:	34	8	Com
7	Evidence of very soft/soft day at base of peat	1	4	4	Negligibio	No		1	4	4	Negligible
В	Evidence of mechanically cut peat	1	4	4	Negligible	No		1	4	4	Negligible
9	Evidence of quaking or buoyant peat	1	4	4	Negligible	No		1	4	4	Negligitie
10	Evidence of bog pools	- 1	.4	4	Negligible	No		1.0	- 4	4	Negligible
11	Relatively deep peat	1	4	4	Negligible	No		1	4	4	Negligibis

_	
١	Maintain hydrology of area as far as possible,
	Assure appropriate supervision of the site is undertaken by the appointed contractor using suitably experienced personnel.
×	Use of experienced contractors and trained operators to carry out the work;

CALMAN COUNTY COUNCIL

0 9 0 0 C707 Partand Renabilitation - Peat Stability Risk Register (Rev 0)

Porthings & DEVEL CHOQUES 201/10/19 GY27R0054

Grid Reference (Eastings, Northings): Varies < 50 Distance to Watercourse (m) 0.0 - 2.0 Min & Max Measured Peat Depth (m): Control Required:

		Pre-Control Measure Implementation						Post-Control Measure Implementation				
Ref	Contributory/Qualitative Factors to Potential Peat Failure	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	Control Required	Control measures to be implemented during construction	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	
1	FOS = 2.59 (u), 2.19 (d)	1	4	4	Negligible	No		1	4	4	Negligibre	
2	Evidence of sub peat water flow	.1	4	4	Neglipbin	No		1	4	4	Negligible	
3	Evidence of surface water flow	2	4	8	LIW	No		2	4	8	Low	
4	Evidence of previous failures/slips	1	4	4	tingligible	No		1	4	4	Negligibis	
5	Type of vegetation	2	4	8	Low	No		2	4	8	Low	
6	General slope characteristics upslope/downslope from probe location	2	4	8	Low	No	See Below	2	4	8	Low	
7	Evidence of very soft/soft day at base of peat	1	4	4	Neglatie	No		1.	4	4	Negligible	
8	Evidence of mechanically cut peat	1	4	4	Negligible	No	1	1	4	4	Negligible	
9	Evidence of quaking or budyant peat	1.	4	4	Negligible	No		1	4	4	Negligible	
10	Evidence of bog pools	1	4	4	Negligible	No		1	4	4	Negligible	
11	Relatively deep peat	2	4		Low	No		2	4	8	Low	

	Control Measures to be Implemented Prior to/and During Rehabilitation Woks
И	Maintain hydrology of area as far as possible;
	Assure appropriate supervision of the site is undertaken by the appointed contractor using suitably experienced personnel;
	Use of experienced contractors and trained operators to carry out the work;

- Note

 (1) FOS abbreviations are: u: FOS for undrained analysis, d: FOS for drained analysis.

 (2) Probability assessed as per Table A and B of Appendix D in PSA.

 (3) Impact based on distance of infrastructure element to nearest watercourse.

Location:	New Access Road (South			
Grid Reference (Eastings, Northings):	Varies			
Distance to Watercourse (m)	< 50			
Min & Max Measured Peat Depth (m):	0.1 - 1.1			
Control Required:	No			

		Pre	Control Mea	sure Imple	ementation		AIT	Pos	t-Control M	easure im	plementation
Ref.	Contributory/Qualitative Factors to Potential Peat Failure	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	Control Required	Control measures to be implemented during construction	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating
1	FOS = 2.83 (u), 2.30 (d)	- 1	4	4	Negligible	No		1	4	4	Negligible
2	Evidence of sub peat water flow	- 1	4	4	Negligitio	No	1 1	1	4.	4	Negligibin
3	Evidence of surface water flow	2	4	8	Low	No	1 1	2	4	8	Low
4	Evidence of previous failures/slips	1	4	4	Negligible	No	1	1	4	4	Negligible
5	Type of vegetation	2	4	8	Line	No	1	2	4	8	Low
6	General slope characteristics upslope/downslope from probe location	2	4	8	Low	No	See Below	2	4	8	Low
7	Evidence of very soft/soft clay at base of peat	11	4	4	Negligibil	No		1	4	4	Negligitie
8	Evidence of mechanically cut peat	. 1	4	4	Negligible	No]	_1	4	4	Negligible
9	Evidence of quaking or buoyant peat	1	4	4	Negligible	No		1	4	4	Nogligitie
10	Evidence of bog pools	1	4	4	Negligible	No	1 1	1	- 4	4	Negligible
11	Relatively deep peat	1	4	4	Negligitis	No	1	1	4	4	Negligible

Maintain hydrology of area as far as possible;
Assure appropriate supervision of the site is undertaken by the appointed contractor using suitably experienced personnel:
Use of experienced contractors and trained operators to carry out the work;

CALMAY COUNTY COUNCIL S 3 LEB 5053 0 0 0 0

Republication - Peat Stability Risk Register (Rev 0)

Location:	New Access Road (North)				
Grid Reference (Eastings, Northings):	Varies				
Distance to Watercourse (m)	< 50				
Min & Max Measured Peat Depth (m):	0.2 - 3.0				
Control Required:	Yes				

		Pre-	Control Mea	sure Imple	ementation			Pos	-Control M	easure îm	plementation
Ref.	Contributory/Qualitative Factors to Potential Peat Failure	Prob (Note 2)	(Note 3)	Risk	Risk Rating	Control Required	Control measures to be implemented during construction	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating
1	FOS = 1.44 (u), 1.92 (d)	- 1	4	- 4	Negligible	No		1	4	4	Negligible
2	Evidence of sub peat water flow	1	4	4	Negligible	No		1	4	4	Megligibin
3	Evidence of surface water flow	2	4	8	Lim	No		2	4	8	Line
4	Evidence of previous failures/slips	- 1	4	4	Neglgible	No		1	4	4	Negligibie
5	Type of vegetation	2	4	. 8	Low	No		2	4	8	Low
6	General slope characteristics upslope/downslope from probe location	2	4	8	tow	No	See Below	2	4	8	Low
7	Evidence of very soft/soft clay at base of peat	.1	4	4	Negligible	No		-1	4	4	Negligible
8	Evidence of mechanically cut peat	- 1	4	- 4	Negligible	No]	.1	4	4	Negligible
9	Evidence of quaking or buoyant peat	5	4	20	1991	No		2	4	8	Low
10	Evidence of bog pools	- 1	4	-4	Negligible	No		1	4	4	Neglgible
11	Relatively deep peat	3	4	12	Medium	No		2	4	8	Law

ř.	Maintain hydrology of area as far as possible;
#	Use of experienced geotechnical staff for supervision of the proposed works;
٧	Use of experienced contractors and trained operators to carry out the work;
v	Access routes shall be locally re-aligned to avoid areas of buoyant peat.
	l control of the cont

- Note
 (1) FOS abbreviations are: u: FOS for undrained analysis, d: FOS for drained analysis.
 (2) Probability assessed as per Table A and B of Appendix D in PSA.
 (3) Impact based on distance of infrastructure element to nearest watercourse.

CONSULTANTS IN ENGINEERING, ENVIRONMENTAL SCIENCE & PLANNING

APPENDIX C

Calculated FOS for Peat Slopes on Site

DUNCIL T 0900 WIND SECTION

3 1- [1000]	0/			strength	of Pest		Placed Fill Depth (m)		
PPOD2			ß (deg)	c _e (kPa)	y (kN/m*)	(m)	Condition (2)	Condition (1)	Condition (2
PPOD2	482611	752382	26	7	10	1.0	2.0	1.78	
PPOD2	262500 T	749095	1	4	10	2.1	1.1	131	2.32
	G482120	749000	1.	4	10	4.7	5.7	2.64	2.01
	482590	749025	22	10	10	0.2	1.2	34.40	2.40
PP006	482765	749336	- 2	- 4	10	2.0	3.0	5.71	1.82
PP008	482363	749127	12	10	10	0.1	1.1	49.17	4.47
PANNINGROEN	/Outries	749243	- 2	4	.10	1.7	2,7	6.75	4.25
WITCHES MILLER	#12206	749475	10	10	10	1.5	2.5	1.90	2.34
39013	482264	749725 749851	5	4	10	0.1	1.1	86.07	4.15
PP013 PP014	483070	749771	3 15	10	10	0.3	1.3	25.51 40.00	1.64
PP015	482684	750202	- 5	4	10	0.5	1.5	9.21	1.07
PPCLE	482761	749596	11	10	10	0.2	1.2	26.69	8.45
PP017	482534	749906	3	4	10	0.9	1.9	8.50	4.03
PPOLB	482963	750194	3	- 4	10	2.0	3.0	3.83	2.55
PP019	482976	749777	12	10	10	0.9	1.9	5.46	2.59
PP020	483501	750555	16	10	10	0.7	1.7	5.39	2.22
PP021	483745	750464		10	10	0.3	1.5	29.02	5,88
PP022	483642	750875	5	4	10	0.3	1.3	13.86	3.54
PP023	483344	751147	26	10	10	0.7	1.7	141	1.49
PP024	483417	750829	18	10	10	1.7	1.6	5.67	2.13
PP026	483174	752276 752463	18	4	10		2.7	675	2.00
PP027 PP029	482960	752468	12	10	10	2.5	3.5	1.95	1.40
PP029 PP030	483895	752049	4	4	10	1.5	2.5	3.83	2.30
PP031	482904	752249	12	10	10	0.8	1.8	6.54	2.81
PPGSZ	482752	752604	18	10	10	0.4	1.4	8.51	2,43
PPGS3	A82597	752661	26	10	10	0.6	1.6	4.02	1.51
PP034	482625	752356	25	10	10	0.7	1.7	4.02	1.58
PP035	482583	752186	25	10	10	0.1	1,1	26.11	2.37
PP036	483474	752944	4	4	10	3.0	4.0	1.92	1.44
PP037	483717	752858	- 3	4	10	3.0	4.0	2.55	1.91
PP038	483697	752633	4	4	10	0.9	1.9	6.39	3.63
PP019	483646	752383	1	4	10	0.2	1.2	38.27	6.58
PP040	483941	752573	4	4	10	0.4	1.4	14,37	4.11
PPG4)	484121	752342	3.	4	10	2.0	3.0	10.00	2.55
PPOL2 PPOL3	483687	753092 753036	15	10	10	1.7	2.7	4.50	2.86
PPOM	484148	752727	2	4	10	1.7	2.7	6.75	4.25
PPOAS	483916	752944	- 6	10	10	0.2	1.2	48.10	8.92
PP046	483904	753255		10	10	3.7	4.7	2.60	2.05
PP047	483613	752151	1	4	10	0.9	1.9	9.00	4.14
FPG48	484102	752159	. 3	4	10	2.5	3.5	3.06	2.19
FP049	483419	753292	- 1	4	10	0.9	1.9	8.50	4.01
PP050	484522	749946	- 1	4	10	0.5	1.5	15.31	5.10
PP051	484214	749932	- 3	4	10	1.8	2.8	4.25	2.73
PP051	483929	750241	1 1	4	10	2.8	3.8	E.19	6.01
PPG57	481765	751418	- 15	10	10	0.2	1.2	20.00	133
PPQ58	483563	751608	15	10	10	0.4	1.4	10.00	2.86
PP058	483333	751876 752881	- 11	10	10	0.1	1.1	\$1.29 8.06	4.85 3.83
PP061	483173	753020	-	10	10	0.3	1.1	15.46	7.70
PP062	483200	753245	1	4	10	0.5	1.8	10.20	4.37
PP063	483856	751645	7	10	10	0.2	1.2	41.34	6.89
PP064	484048	751547	1	4	10	0.3	1.1	20.61	6.12
PPOGE	483350	750098	- 5	4	10	0.8	1.8	5.76	2.56
PP069	483212	749946	- 8	10	10	1.4	2.4	5.18	1.07
PPC70	481320	749794	30	10	10	2.2	3.2	2.65	LES
PP671	483196	749290	7	10	10	1.2	2.2	6.89	1.76
PP072	482537	749459	20	10	10	0.1	1.1	31.11	2.83
PP073	483479	749434	- 3	4	10	1.7	2.7	A.50	2.83
PP074	482917	749455	10	10	10	0.2	1.2	29.34	8.87 5.46
PPC75	482424	749313	3	4	10	1.1	2.1	3.29	1.92
PP076	483299	751386		4	10	0.4	1.1	11.04	3.70
PPG78	483127	749994	10	10	10	1.6	2.6	1.65	2.25
PPG79	482372	749558	8	10	10	0.8	1.8	9.07	4.03
PPORU	482835	749796	30	10	10	0.1	1.1	58.48	5.12
PPOR1	483258	749471	2	4	10	1.8	2.8	0.17	4.10
PPOSZ	483253	753386	7	10	10	1.9	2.9	4.35	2,85
PPOR.I.	483183	753650	- 6	10	10	2.3	3.3	4.18	2.91
PPOS4	489487	752687	. 8	10	10	0.4	1.4	18.14	5.18
PPORS .	483671	749426	1	4	10	4.0	5.0	2.02	2.29
							Minimum = Maximum =	1.78 58.48	8.02

Notes:

[1] Assuming a bulk unit weight for peat of 10kN/m⁴

[2] Assuming a surcharge equivalent to fill depth of 1m of peat i.e. 10kPa.

[3] Stope inclination [5] based on site readings and site contour plans.

[4] A lower bound undrained shear strength, ou for the peat of 4kPa (slopes < 6 degrees) and 10kPa (slopes > 6 degrees) were selected for the assessment. It should be noted that a cu of 4/10kPa for the peat is considered a conservative value for the analyses and is not representative of all peat present across the site. In reality the peat has a significantly higher undrained strength.

[5] Peat depths based on probes carried out by FT.

[6] For load conditions see report text.

ocation (i)	Stepe	Design of	Bulk unit weight of Peat	circlt weight of Water		friction Angle	Sunharge	Equivalent Total Depth of Peat (m)	res for ben	yciare read	and nem	Januarion -	Prained And					
	to lidegi	c' (NPx)	y (800/m²)	y, [M]/m*)	int	e' (dog)	Condition (2)	Condition (2)	Condition (1)	Condition (1)	Condition (1)	Condition (1)	Condition (1)	Condition (2)	Condition (2)			Condition
	100	_				AS INC.		31363	d% Water	25% Wester	50% Water	PS% Water	330% Water	(% Water	25% Water	SIN Water	75% Water	IDEN W
MONOR.	. 29	-	10.0	16.6	1.6		1.0	19	1.65	- 15	181	1.39	100	- 14	1 00	100		- 100
MALL	1	-	10.0	10.0	2.6	25	1.0	33	11.11	10.00	7.79	100	3.00	11111	8.63	6.02	40	14
FFIEL	1.1		33.8	10.0	4.7	- 75	1.0	3.7	18.79	12.44	8.13	8.79	3.60	15.87	SEAL.	18	7.31	6.8
PPORE	111		20.0	10.0	0.1	.35	3.81	13.	0.81	6.62	6.00	8.05	3.39	3.41 17.18		13.71	100	1.0
PTODE	1.7	4	30.0	10.0	3.0	75	1.0	3.0	18.00	16.75	13.41	107	100		15.05			
PPODE	(1)		10.0	10.0	9.3	25	1.0	11.	35,86	(3.8)	24.77	86.23	16.67	3 50		5.96	3.85	- 13
PPARE	-		30.0	10.0	1.7	75	1.0	1.7	38.3E 4.2E	16.76	18.42	19.46	A.71	37,65	15.89	13.46	11.30	- 11
PPIDL	- 10		35.6	30.6	3.5	n	1.0	1.5	A.M	8,54	3.88	- 575	LM	3.50	1.0	5.79	1.85	- 12
PP(U)	1	+	10.0	10.0	8.1		1.6	1.3	16.46	No. OF	40.78	27.00 27.74	m. 10	16.01	1647	13.79	1834	**
PPOSE PPOSE	16	- 4	10.0	10.0	0.1	n n	1.0	13	12.34	92.18 17.36	18.60 18.67	30.00	16.61	5,07	5.00	1.0	No.	10.0
PMSD.	1	-	20.0	10.0	8.5	D	1.0	1.5	16.94	Acres 1977	13.00	89.35	111	2.44		The same of	160	100
PPORE.	- 11	- 4	38.6	10.0	6.3	.75	1.0	1.7	13.64 13.46	12.46	13.88		10.56	12.01	8.00	110	3.54	3.3
PRIST.	- 1		30.0	10.0	6.3	25	1.0	1.9	UTAG	1000	12.85	11.28 30.29	8.30	13.65	LLBF	16.62	8.70	A.7
PPUIA	1	- 4	10.0	10.0	1.0	in	1.0	3.6	D11	10.39	8.18	8.00	1.60	33.41	8.35	8.00	736	- 84
PROCES	M		30.0	30.6	8.7	- n	1.0	1.9	436	0.81	1.18	1.6	116	848	4.97	1.71	1.89	6
PROLI	14	+	10.0			75	1.0	17	14.19	3,54	1837	17.44		5.60	3.47	5.00	101	- 14
MODE .	1 1	- :	30.0	10.0	0.1	- 75	1.0	1.3	Das	18.05	100	10.00	100	9.87	8.07		7.8%	- 11
PRISE!	- 26	-	30.0	10.0	8.7	25	1.6	1.8	E41	3,37	1.00	1.49	1.60	8.66	14	8.00 5.00	1.00	
PPOUR	18	4	30.0	10.0	8.6	35	1.0	1.6	1.39	9.34	2.00	2.44	127	2.79	100	1.62	1.80	8.0
PTO/4	- 1		30.0	10.0	1.7	n.	1.0	1.3	1.50	18.79	IAC SEC.	STATE OF THE PERSON.	8.71	11.00	15.00	13.00	11.30	9.0
FF027	19		30.0	10.9	4.7	. 75	1.6	12.	1.86	38.6	2.86	AM:	184	3.34		1,84	1.79	1.0
PMQ29	- 14		20.0	10.0	3.5	28	3.0	33	2.86	1.0	1.86	7.04	125	2.34	1.0	1.67	1.16	- 14
PPURO PPURO	4		20.0	10.0	1.5	,n	1.0	2.5	18,80	4.03	122	10	1.61	8.67	7.82	6.63	17	13
PHILL	- 12	+	30.8	10.6	8.8	n	1.0	1.6	4.81	6.07	9.72 4.62	8.79	186	3.41	1,64	2.85	1.01	1.3
PROD.	14	+	20.0	10.6	9.4	n .	1.0	1.6	1.0	2.27	1.00	1.61	141	1.00	12	1.81		
PPONE.	- 0		30.0	10.6	6.7	25	1.0	1.7	3.61	2.86	1.00		1.65	1.61	2.34	1.00	1.01	-
mas	-25	4	20.0	10.0	0.1	-25	1.0	1.1	(3.44)	13.35	11.96	33,69	15.44	5.85	5.60	100	1.66	4.0
PROSE?	- 4	. 4	30.0	30.0	8.0	- 25	1.0	6.0	8.50 U.40	12	5.25 7.00	THE RESERVE TO SERVE	7,00	2.12	3.30	146	4.24	8.5 8.5
			30.6	16.0	1.0	n	1.0	4.0	LLAS	8.22		4.79		38.81	8.34	7.41	5.84	4.5
PTORE	4		30.8	10.0	1.0	75	1.6	1.5	47.16	15.00	575	10	6,00	1.00	- 48	811	530	
PTONO	1	+	99.0	10.6	8.1	75	1.0	13	13.04	70,60	9.8s	10.00	16.27	31.00	10.30	54.39	1838	- 17
PPORT.	1	4	20.0	10.0	2.0	8	1.0	10	11.71	19.10	8.00	1.01	3,61	33-46	1.17	6.00	7.00	113
PROBLE	19	4	10.0	10.0	0.4		1.0	14	3.74	6.21	6.62	6.94		2.80	2.76	2.00		10
PPORE	- 1	4	90.0	10.0	D.	25	1.8	2.3	13.60	15.25	8.85	6.75	100	33,79	200	8.30	750	8.1
PTOMA	- 1	- 4	20.8	10.0	3.7	. 75	1.6	10	26.36	16.79	13.42	10	8.79	17.60	25.00	13.6	11.00	9.8
PRIAME		-4	10.0	10.6	8.3	75	1.6	LI 47	11.00	11.1F	73.00	10.34	1824	744	7.0	7.02	1.85	-
PTON	-	+	10.0	10.0	2.1	n	1.0	6.7	17,80				1.00	3.50	A.W.	8.85	100	6.91
PEGET PETANG	-	-	30.0	10.0	2.5	75	1.0	1.5	13.94	9.79	7.60	\$1.79 \$29	100	23.00	1 10	2.91	8.07	4.7
Property.	1	-	10.0	10.0	63	25	1.0	13	17.40	15.10	12,00	16.73	1.50	12.80	11.67	10.00	9.70	9.7
PRISO:	1	4	10.6	36.6	65	- 75	1.0	1.5	3430	11.00	59.74	37.34	0.31	10.00	19.00	18.80	11.79	11.4
PTIRE.	1	4	38.6	10.0	1.8	75	1.6.	2.8	IAII	10.05	6.76	2.46	430	11.62	19,31	6.17	336	3.6
APISE	- b	+	30.0	10.0	1.8	- 25	1.01	.1.6	3636	88.22	31,34	LEAT	839	32,75	27.63	21.00	17.00	- 15
PPOC?	25	4	10.0	30.0	0.1	25	1.0	12	8,76	8.81	117	8.44	A.00	3.47	- 10	2.88	1.86	
PERM	15	4	10.0	10.0	9.4	- 25	1.0	3.4	5.74	5.51	6.67		416	2.66	2.76	249	Ast	-
PTORE	- 11	-	10.0	10.0	8.9	- 6	1.0	13	4,34	12.16 4.71	6.86	J. 95	3.25	4.01	4.69	6.20	147	- 21
PERSONAL PROPERTY.		4	10.0	10.0	8.1	- 23	1.0	13	11.01	18,77	22.0	40	13.30	1.50	7.31	7.07	1.01	9.0
PRINT	1	-	10.0	10.0	3.8	73	1.8	1.6	13.10	10.00	95.51	LE SE	18.30	18.57	11.01	11.00	10.41	
PT065	1		10.0	10.0	6.)	. 25	1.0	1.7	20.39	28,98	10.43	U. ex	18.50	19.57		8.24	8.00	8.8
PP084	- 1		10.0	10.0	0.1	- 25	1.0	1.8	98.15	17.24	91.04	30.84	30.67	19.61	1638	98.07	13.66	213.
PTORE	. 1	4.	50.0	10.0	0.8	25	1.0	1.8	539	436	6.62	1/2		430				
PTORE		4	30.0	10.0	1.4	25	1.8	2.4	3,85	4.14	3.79	- 12	185	4.30	485	8.79 3.56	8.13 8.50	5.5
PPOPE	30		10.0	10.0	2.2	.0	1.0	.12	N.D.	3.63	3,87	1.71	1.00	9.38	1.01	3.47	155	
APUT L	-	-	10.0	10.0	M	25	1.0	3.2	18,78	5.60	4.65	30.77	136	5.60	4.94	AD.	171	
PRODUCT OF THE PROPERTY OF THE	30	-	30.0	10.0	1.7	20	1.0	11	13.40	13.41	13.59	4.00	U.6	11.73	10.00	2.00	7.34	
BYEN4	30	-	30.0	16.0	8.3		1.0	13	3434	13.66	19.61	13.84		6.39	7.0	417		- 2
erces.	1	4	30.0	10.0	1.1	75	1.0	7.3	29.78	20.84	17.50	13.79	11.70 19.65	18.61	27.07 27.07	15.81	U.SF	- 11
gratus:	- 8	4	30.8	10.6	3.4	25	1.0	2.4	8.81	7.39	3.86	64)	3.39	7.49	3.67	1.00	4.61	100
#1011 :	. 19		80.0	10.0	8.0	75	1.0	1.4	7.21	6.21	8,23	8.11	621	3,07	9.28	8.03	2.86	100 M
\$109	-:19	.4	20.0	10.0	1.4	- 75	1.8	1.6	6.22	3.43	2.79	2.12	1.86	3.84	244	2.79	2.22	11.0
gruns .			10.0	10.0	8.8	- 25	1.0	1.8	6.81	8.12	1.25	A.C.	1.60	0.00	836	4.10	1.64	
grant.	10	4	10.0	10.0	8.1	- 25	1.9	1.1	36.45	28.87	4471	24.61	28.96	6.37	671	441	A.50	- 61
Print	1	-	10.0	10.0	13	25	1.0	2.6	15.61	4.14	33.03	6/1	174	37.85	15.30	15.56	3.07	
Profits	1	-	10.0	16.6	2.1	8	1.0	33	8.00	5,00	181	10	1,074	6.94 5.84	4.00	430	3.07	- 11
rman.	1	-	10.0	10.0	9.4	8	1.6		MAT	9.74		4.01		3.84		4.62		- 44
PYORE .	11	-	10.0	10.0	4.2	75	1.0	1.4	18.22	12.64	8,91 8,94	621	7.85	21.01	12.00	3831	740	- 11
	-		The state of the s			and desired					-						7887	
								Minimum +	3.87	1.71	1.49	1.29	6.3%	1.40	1.34	1.22	MILE	0.0
												47.40	40.07	31.75	22.83	22,96	17.94	13.

WHITE PARTIES ASSESSED w FEB 2023 0 0 8 0

2

Notine:

If Assuming a look werd weight of preet of \$10 (MA/m²)

If Assuming a look werd weight of preet of \$10 (MA/m²)

If Assuming a look werd weight of the flow of the state of the

CONSULTANTS IN ENGINEERING, ENVIRONMENTAL SCIENCE & PLANNING

APPENDIX D

Methodology for Peat Stability Risk Assessment

Methodology for Peat Stability Risk Assessment

A peat stability risk assessment was carried out for each of the RHBs and along the new and existing access roads. This approach takes into account guidelines for geotechnical/peat stability risk assessments as given in PLHRAG (2017) and MacCulloch (2005). The degree of risk is determined as a Risk Rating (R), which is the product of probability (P) and impact (I). How these factors are determined and applied in the analysis is described below.

The main approaches for assessing peat stability include the following:

- (a) Geomorphological
- (b) Qualitative (judgement)
- (c) Index/Probabilistic (probability)
- (d) Deterministic (factor of safety)

Approaches (a) to (c) listed above would be considered subjective and do not provide a definitive indication of stability; in addition, a high level of judgement/experience is required which makes it difficult to relate the findings to real conditions. FT apply a more objective approach, the deterministic approach. As part of FT's deterministic approach, a qualitative risk assessment is also carried out taking into account qualitative factors, which cannot necessarily be quantified.

Probability

The likelihood of a peat failure occurring was assessed based on the results of both the quantitative results of stability calculations (deterministic approach using factors of safety) and the assessment of the severity of several qualitative factors which cannot be reasonably included in a stability calculation but nevertheless may affect the occurrence of peat instability.

The qualitative factors used in the risk assessment are outlined in Table A and have been compiled based on FT's experience of assessments and construction in peat land sites and peat failures throughout Ireland and the UK.

Table A: Qualitative Factors used to Assess Potential for Peat Failure

Qualitative Factor	Type of Feature/Indicator for each Qualitative Factor (1)	Explanation/Description of Qualitative Factor			
	No	Based on site walkover observations. Sub peat water flow generally occurs			
Evidence of sub peat	Possibly	in the form of natural piping at the base of peat. Where there is constriction or blockage in natural			
	Probably	pipes a build-up of water can occur a the base of the peat causing			
Evidence of sub peat water flow	Yes	reduction in effective stress at the base of the peat resulting in failure; this is particularly critical during periods of intense rainfall.			

S 3 LEB SOS3 0 0 8 0

Qualitative Factor	Type of Feature/Indicator for each Qualitative Factor (1)	Explanation/Description of Qualitative Factor				
	Dry	Based on site walkover observations.				
Evidence of surface	Localised/Flowing in drains	The presence of surface water flow indicates if peat in an area is well				
water flow	Ponded in drains	drained or saturated and if any additional loading from the ponding of				
	Springs/surface water	surface water onto the peat is likely.				
	No					
Evidence of previous	In general area	Based on site walkover observations The presence of clustering of relict failures may indicate that particular				
failures/slips	On site	pre-existing site conditions predispose a site to failure.				
	Within 500m of location	predispose a site to fundic.				
	Grass/Crops	Based on site walkover observation				
Type of vegetation	Improved Grass/Dry Heather	The type of vegetation presen indicates if peat in an area is well drained, saturated, etc. Vegetation				
Type of vegetation	Wet Grassland/Juncus (Rushes)	that indicates wetter ground may also indicate softer underlying pea deposits.				
	Wetlands Sphagnum (Peat moss)					
	Concave	Based on site walkover observations				
General slope characteristics	Planar to concave	Slope morphology in the area of the infrastructure location is an importan				
from infrastructure	Planar to convex	factor. A number of recorded pea failures have occurred in close				
location	Convex	proximity to a convex break in slope.				
Evidence of very	No	Based on inspection of exposures in general area from site walkover Several reported peat failures identif				
idence of previous idence of previous idence of previous idence of previous idence of vegetation Wet Gra Wetland eneral slope naracteristics pslope/downslope om infrastructure potation widence of very oft/soft clay at base of eat widence of	Yes	the presence of a weak layer at th base of the peat along which sheat failure has occurred.				
Evidence of mechanically cut peat	No	Based on site walkover observations Mechanically cut peat typically cu using a 'sausage' machine to extrao				

Qualitative Factor	Type of Feature/Indicator for each Qualitative Factor (1)	Explanation/Description of Qualitative Factor					
	Yes	peat for harvesting. Areas which have been cut in this manner have been linked to peat instability. The mechanical cuts can notably reduce the intrinsic strength of the peat and also allow ingress of rainfall/surface water.					
vidence of quaking or uoyant peat vidence of bog pools	No	Based on site walkover observations. Quaking/buoyant peat is indicative of highly saturated peat, which would					
Evidence of quaking or buoyant peat	Yes	generally be considered to have a l strength. Quaking peat is a feature sites that have been previously link with peat instability.					
Evidence of quaking or buoyant peat Evidence of bog pools	No	Based on site walkover observations. Bog pools are generally an indicator of areas of weak, saturated peat. Commonly where there are open					
	Yes	areas of water within peat these can be interconnected, with the result that there may be sub-surface bodies of water. The presence of bog pools have been previously linked with peat instability.					
Other	Varies	In addition to the above features/ indicators and based on site recordings the following are some of the features which may be identified: Excessively deep peat, weak peat, overly steep slope angles, etc.					

Note (1) The list of features/indicators for each qualitative factor are given in increasing order of probability of leading to peat instability/failure.

It should be noted that the presence of one of the qualitative factors alone from Table A is unlikely to lead to peat instability/failure. Peat instability/failure at a site is generally the combination of a number of these factors occurring at the same time at a particular location. The probability rating assigned to the quantitative and qualitative factors is judged on a 5-point scale from 1 (indicating negligible or no probability of failure) to 5 (indicating a very likely failure), as outlined in Table B.

COUNTY COUNTY COUNCIL

Table B:

Probability Scale

O CZOZ Scale	Factor of Safety	Probability
3053 Scale	1.30 or greater	Negligible/None
WHING & DEVELOP	ð 1.29 to 1.20	Unlikely
LEVEL & DEVEL	1.19 to 1.11	Likely
4	1.01 to 1.10	Probable
5	≤1.0	Very Likely

Scale	Likelihood of Qualitative Factor leading to Peat Failure	Probability of Failure
1	Negligible/None	Least
2	Unlikely	
3	Probable	
4	Likely	
5	Very Likely	Greatest

Impact

The severity of the risk is also assessed qualitatively in terms of impact. The impact of a peat failure on the environment within and beyond the immediate site is assessed based on the potential travel distance of a peat failure. Where a peat failure enters a watercourse, it can travel a considerable distance downstream. Therefore, the proximity of a potential peat failure to a drainage course is a significant indicator of the likely potential impact.

The risk is determined based on the combination of hazard and impact. A qualitative scale has been derived for the impact of the hazard based on distance of infrastructure element to a watercourse (Table C).

The location of watercourses is based on topographic maps and supplemented by site observations from walkover survey. Note that not all watercourses are shown on maps.

Table C: Impact Scale

Scale	Criteria	Impact
1	Proposed infrastructure element greater than 150m of watercourse	Negligible/None
2	Proposed infrastructure element within 150 to 101m of watercourse	Low
3	Proposed infrastructure element within 100 to 51m of watercourse	Medium

4	Proposed infrastructure element within 50 m of watercourse	High
5	Proposed infrastructure element within 50 m of watercourse, in an environmentally sensitive area	Extremely High

Risk Rating

The degree of risk is determined as the product of probability (P) and impact (I), which gives the Risk Rating (R) as follows:

The Risk Rating is calculated from: R = P x I

Due to the 5-point scales used to assess Probability and Impact, the Risk Rating can range from 1 to 25 as shown in Table D.

Table D: Qualitative Risk Rating

			Proba	bility			
		1	2	3	4	5	
	5	5	10	15	20	25	
Impact	4	4	8	12	16	20	
Ē	3	3	6	9	12	15	
	2	2	4	6	8	10	
	1	1	2	3	4	5	

	Risk Rating & Control Measures
17 to 25	High: avoid working in area or significant control measures required
11 to 16	Medium: notable control measures required
5 to 10	Low: only routine control measures required
1 to 4	Negligible: none or only routine control measures required

The risk rating is calculated individually for each contributory factor. Control measures are required to reduce the risk to at least a 'Low' risk rating. The control measures in response to the qualitative risk ratings are included in the peat stability risk registers for each main infrastructure element in Appendix B.

The risk rating is calculated individually for each contributory factor. Control measures are required to reduce the risk to at least a 'Tolerable' risk rating

CONSULTANTS IN ENGINEERING, ENVIRONMENTAL SCIENCE & PLANNING

www.fehilytimoney.ie

Core House Pouladuff Road, Cork, T12 D773, Ireland +353 21 496 4133

O Dublin Office

J5 Plaza, North Park Business Park, North Road, Dublin 11, D11 PXTO, Ireland +353 1 658 3500

Carlow Office

Unit 6 Bagenalstown Industrial Park, Bagenalstown, Co. Carlow, R21 XW81, Ireland +353 59 972 3800

ENVIRONMENT (SO 14001 2015 NSAI Certified

Traffic Count Data

COUNTY COUNCIL

PLANNING & DEVELOPMENT SECTION

2 3 FEB 2023 0 0 6 0

GALWAY COUNTY COUNCIL

Site Location

Movement Numbering

Job number:	Job Date:	Drawing No:	traffinomics
TRA/23/008	12 th January 2023	TRA/23/008-01	
Client:	Job Day:	Author:	ie ie
Alan Lipscombe	Thursday	SPW	

DERRYCLARE TRAFFIC COUNT MANUAL CLASSIFIED JUNCTION TURNING COUNT

JANUARY 2023 TRA/23

SITE:

53 FEB 2023 0 06 0

GALWAY COUNTY COUNCIL

DATE:

12th January 2023

01

LOCATION: R344/Derryclare Nature Reserve Access

DAY:

		М	VEMEN	NT 1					MC	OVEMEN	NT 2					MC	VEMEN	E TI			
TIME	CAR	LGV	OGV1	OGV2	BUS	тот	PCU	CAR	LGV	OGV1	OGV2	BUS	тот	PCU	CAR	LGV	OGV1	OGV2	BUS	тот	PCU
7:00	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0
7:15	0	0	0	0	0	0	0	2	0	0	0	0	2	2	0	0	0	0	0	0	
7:30	0	0	0	0	0	0	0	4	0	0	0	0	4	4	0	0	0	0	0	0	0
7:45	0	0	0	0	0	0	0	3	0	0	0	0	3	3	0	0	0	0	0	0	0
н/тот	0	0	0	0	0	0	0	10	0	0	0	0	10	10	0	0	0	0	0	0	0
8:00	0	0	0	0	0	0	0	6	1	0	0	0	7	7	0	0	0	0	0	0	0
8:15	1	0	0	0	0	1	1	4	0	0	0	0	4	4	0	0	0	0	0	0	0
8:30	0	0	0	0	0	0	0	1	1	0	0	0	2	2	0	0	0	0	0	0	0
8:45	0	0	0	0	0	0	0	6	1	1	0	0	8	9	0	0	0	0	0	0	0
н/тот	1	0	0	0	0	1	1	17	3	1	0	0	21	22	0	0	0	0	0	0	0
9:00	0	0	0	0	0	0	0	4	0	0	0	0	4	4	0	0	0	0	0	0	0
9:15	0	0	0	0	0	0	0	4	0	0	0	0	4	4	0	0	0	0	0	0	0
9:30	0	0	0	0	0	0	0	4	1	1	0	0	6	7	0	0	0	0	0	0	0
9:45	0	0	0	0	0	0	0	5	2	0	0	0	7	7	0	0	0	0	0	0	0
н/тот	0	0	0	0	0	0	0	17	3	1	0	0	21	22	0	0	0	0	0	0	0
10:00	0	0	0	0	0	0	0	2	0	0	0	0	2	2	0	0	0	0	0	0	
10:15	0	0	0	0	0	0	0	1	1	0	0	0	2	2	0	0	0	0	0	0	0
10:30	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0
10:45	0	0	0	0	0	0	0	4	0	0	0	0	4	4	0	0	0	0	0	0	0
н/тот	0	0	0	0	0	0	0	8	1	0	0	0	9	9	0	0	0	0	0	0	0
11:00	0	0	0	0	0	0	0	1	1	0	0	0	2	2	0	0	0	0	0	0	C
11:15	0	0	0	0	0	0	0	5	0	1	0	0	6	7	0	0	0	0	0	0	0
11:30	0	0	0	0	0	0	0	3	2	0	0	0	5	5	0	0	0	0	0	0	(
11:45	0	0	0	0	0	0	0	1	1	1	0	0	3	4	0	0	0	0	0	0	(
н/тот	0	0	0	0	0	0	0	10	4	2	0	0	16	17	0	0	0	0	0	0	(
12:00	0	0	0	0	0	0	0	4	0	0	0	0	4	4	0	0	0	0	0	0	- (
12:15	0	0	0	0	0	0	0	4	1	1	0	0	6	7	0	0	0	0	0	0	
12:30	0	0	0	0	0	0	0	1	0	1	0	0	2	3	0	0	0	0	0	0	
12:45	0	0	0	0	0	0	0	4	1	0	0	0	5	5	0	0	0	0	0	0	
н/тот	0	0	0	0	0	0	0	13	2	2	0	0	17	18	0	0	0	0	0	0	

DERRYCLARE TRAFFIC COUNT NUAL CLASSIFIED JUNCTION TURNING COUNT

JANUARY 2023 TRA/23/008

SITE:

01

DATE:

12th January 2023

LOCATION: R344/Derryclare Nature Reserve Access

DAY:

		MC	VEMEN	IT 1				MOVEMENT 2						110							
TIME	CAR	LGV	OGV1	OGV2	BUS	тот	PCU	CAR	LGV	OGV1	OGV2	BUS	тот	PCU	CAR	LGV	OGV1	OGV2	BUS	тот	PCL
13:00	0	0	0	0	0	0	0	6	1	0	1	0	8	9	0	0	0	0	0	0	0
13:15	0	0	0	0	0	0	0	3	0	1	0	0	4	5	0	0	0	0	0	0	0
13:30	0	0	0	0	0	0	0	5	2	1	0	1	9	11	0	0	0	0	0	0	0
13:45	0	0	0	0	0	0	0	3	2	1	0	0	6	7	0	0	0	0	0	0	0
н/тот	0	0	0	0	0	0	0	17	5	3	1	1	27	31	0	0	0	0	0	0	0
14:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14:15	0	0	0	0	0	0	0	6	0	0	0	0	6	6	0	0	0	0	0	0	0
14:30	0	0	0	0	0	0	0	0	1	0	0	0	1	1	0	0	1	0	0	1	2
14:45	0	0	0	0	0	0	0	4	0	2	0	0	6	7	0	0	0	0	0	0	0
н/тот	0	0	0	0	0	0	0	10	1	2	0	0	13	14	0	0	1_	0	0	1	2
15:00	0	0	0	0	0	0	0	1	2	1	0	1	5	7	0	0	0	0	0	0	0
15:15	0	0	0	0	0	0	0	1	0	1	0	:1	3	5	0	0	0	0	0	0	0
15:30	0	0	0	0	0	0	0	4	0	0	0	0	4	4	0	0	0	0	0	0	0
15:45	0	0	0	0	0	0	0	5	0	0	0	1	6	7	0	0	0	0	0	0	0
н/тот	0	0	0	0	0	0	0	11	2	2	0	3	18	22	0	0	0	0	0	0	0
:00	0	0	0	0	0	0	0	2	0	0	0	0	2	2	0	0	0	0	0	0	0
16:15	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0
16:30	0	0	0	0	0	0	0	2	0	0	0	0	2	2	0	0	0	0	0	0	0
16:45	0	0	0	0	0	0	0	2	0	0	0	0	2	2	0	0	0	0	0	0	0
н/тот	0	0	0	0	0	0	0	7	0	0	0	0	7	7	0	0	0	0	0	0	0
17:00	0	0	0	0	0	0	0	6	0	1	0	1	8	10	0	0	0	0	0	0	0
17:15	0	0	0	0	0	0	0	3	0	0	0	0	3	3	0/	OQ A	NNING	8. BEVE	OBM	AVP.	0
17:30	0	0	0	0	0	0	0	4	0	1	0	0	5	6	6	0	0	0	0	SEC	TO
17:45	0	0	0	0	0	0	0	7	0	0	0	0	7	7	0	23	B FF	8 202			
н/тот	0	0	0	0	0	0	0	20	0	2	0	1	23	25	0	0,	0	0	0	0 8 0	0
18:00	0	0	0	0	0	0	0	1	0	0	0	0	7	1	0	0	Farmer	- 0	0	0,	- 0
18:15	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0
18:30	0	0	0	0	0	0	0	3	0	0	0	0	3	3	0	0	0	0	0	0	0
18:45	0	0	0	0	0	0	0	1	0	1	0	0	2	3	0	0	0	0	0	0	0
тот	0	0	0	0	0	0	0	6	0	1	0	0	7	8	0	0	0	0	0	0	0
Р/ТОТ	1	0	0	0	0	1:	1	146	21	16	1	5	189	203	0	0	1	0	0	1	2

DERRYCLARE TRAFFIC COUNT MANUAL CLASSIFIED JUNCTION TURNING COUNT

JANUARY 2023 TRA/23

SITE:

01

GALWAY COUNTY COUNCIL 53 EEE 5053 0 0 0 0

DATE:

12th January 2023

LOCATION: R344/Derryclare Nature Reserve Quadages 9NINNY 18

DAY:

TIME	MOVEMENT 4							MOVEMENT 5													
	CAR	LGV	OGV1	OGV2	BUS	тот	PCU	CAR	LGV	OGV1	OGV2	BUS	тот	PCU	CAR	LGV	OGV1	OGV2	BUS	тот	PCU
7:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3
7:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•
7:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
н/тот	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
н/тот	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
н/тот	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
10:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1
10:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
н/тот	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1
11:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
н/тот	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
12:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
12:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
12:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
12:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
н/тот	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

DERRYCLARE TRAFFIC COUNT NUAL CLASSIFIED JUNCTION TURNING COUNT

JANUARY 2023 TRA/23/008

SITE:

01

DATE:

12th January 2023

LOCATION: R344/Derryclare Nature Reserve Access

DAY:

		м	OVEMEN	NT 4					м	OVEMEN	NT 5										
TIME	CAR	LGV	OGV1	OGV2	BUS	тот	PCU	CAR	LGV	OGV1	OGV2	BUS	тот	PCU	CAR	LGV	OGV1	OGV2	BUS	тот	PCU
13:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
н/тот	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14:30	0	0	1	0	0	1	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
н/тот	0	0	1	0	0	1	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
н/тот	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1
16:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	A:QUI	NG & DI	VEOOP	MEGVI	SEC	0
н/тот	0	0	0	0	0	0	0	0	0	0	0	0	0	0	12	0	0	0	0	410	W
17:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0 (1	23	FEB	2023	nºn	ьų	1
17:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	10	0	0	0	0	0	9)
17:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	GALW	AY CO	O WINITY	COLIN	CIL	6
17:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	600	UNIT	COOL	0	0
н/тот	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1
18:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
тот	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
P/TOT	0	0	1	0	0	1	2	0	0	0	0	0	0	0	3	0	0	0	0	3	3