

Agents Workshop on Site Suitability Assessment for Domestic Waste Water Treatment Systems

Galway County Council

An Roinn Comhshaoil, Aeráide agus Cumarsáide Department of the Environment, Climate and Communications

Comhairle Chontae na Gaillimhe Galway County Council

8th June 2023

The EPA Code of Practice (2021), changes, and what they mean for difficult sites in Galway

Risks from Domestic Waste Water Treatment Systems

- Coliform bacteria in 43% of groundwater monitoring sites (EPA, 2018) and 15%-58% of household wells (Gill et al., 2018).
- 165,000 Domestic Waste Water Treatment Systems co-located with household wells.
- Domestic waste water a significant pressure in 11% of at risk water bodies *e.g* Clarinbridge, Black (Shrule)_020, Abbert_040, Ballycuirke_010 and Mask lake
- **50% of Domestic Waste Water Treatment Systems fail inspection.**
- Approx. 4,000 DWWTS registered per annum.

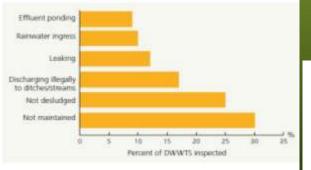
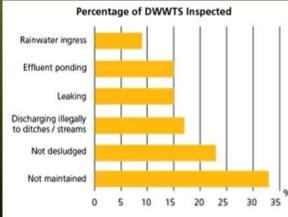
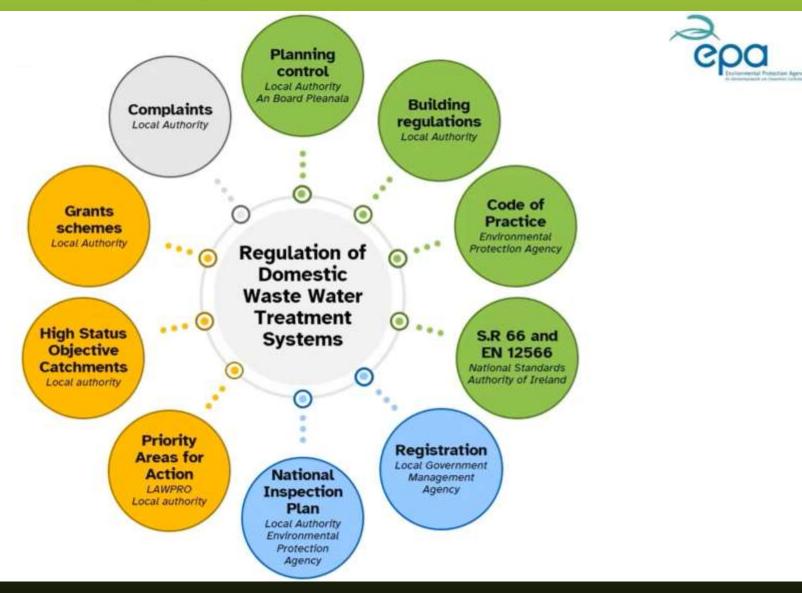
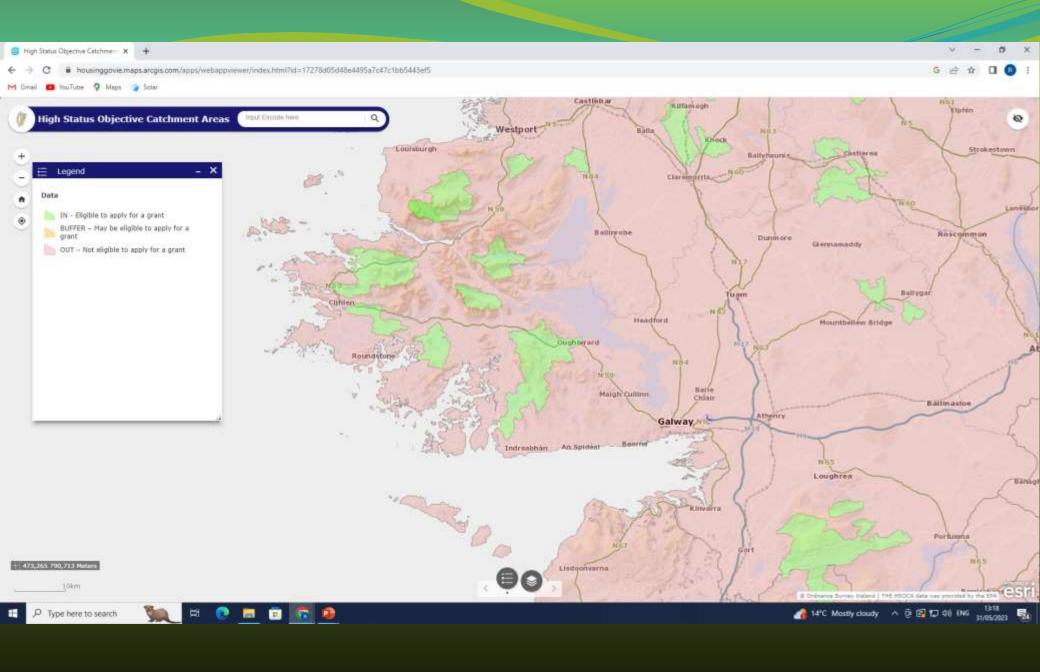




FIGURE 1: Reasons for DWWTS failures 2019 (individual DWWTS can fail for multiple reasons)

Regulatory system

Legislation

- Water Services (Amendment) Act 2012
- Registration Regulations (S.I. No. 220 of 2012)
- Registration (Amendment) Regulations (S.I. No. 180 of 2013)
- Domestic Waste Water Treatment Systems Regulations (S.I. No. 223 of 2012)
- Domestic Waste Water Treatment Systems (Financial Assistance) Regulations (S.I. No. 222 of 2013)
- Appointment Regulations (S.I. No. 384 of 2012)
- Reinspection Regulations (S.I. No. 189 of 2013)
- Commencement Order (S.I. No. 219 of 2012)
- Housing Financial Assistance Regulations (S.I. No. 184 of 2020)
- Housing Financial Assistance for Prioritised Areas for Action Regulations 2020 (S.I. No. 185 of 2020)
- Housing Financial Assistance for High Status Objective Catchment Areas Regulations 2020 (S.I. No. 186 of 2020)


Grants

Advisory notice with actions and timeframes

Grants

- High Status Objective Areas
- National Inspection Plan
- Priority Areas for Action

Year	Grants	€
2014	29	€ 98,575
2015	85	€ 256,559
2016	72	€ 212,000
2017	56	€ 179,433
2018	83	€ 289,499
2019	160	€ 497,719
2020	112	€ 388,983
Total	597	€ 1,922,768

History

History

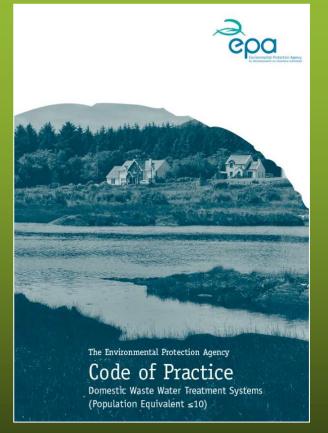
History – Irish Standards

- NSAI S.R. 6 1975
- NSAI S.R. 6 1991
- EPA Guidance 2000
- EPA Code of Practice 2009
 EPA Code of Practice 2021

Percolation value: 1-60 → 5-60 → 1-50 → 3-90 → 3-120

1975-1991 1991-2000 2000-2009 2009-2021 2021 - ??

Review process for 2021 Code


- EPA ... Steering Committee: Department of Housing, Local Government and Heritage; City and County Management Association; Trinity College Dublin; Irish Onsite Wastewater Association and Irish Water Treatment Association.
- Expert assistance: Dr Robbie Meehan (Site Assessor) and Professor Laurence Gill (Technical Guidance and Research findings).
- Public consultation:11 December 2018 to 26 March 2019 -37 submissions containing approximately 500 individual comments.
- Statutory consultation: Minister for the Environment, Climate and Communications and Minister for Housing, Local Government and Heritage.

Code Publication

- Section 76 of the Environmental Protection Agency Act, 1992 (as amended).
- Issued 24/03/2021 came into effect 07/06/2021.
- Published online with electronic form, explanatory letter and response to public consultation.

http://www.epa.ie/water/wastewater/guidance/cop/

- Hardcopies from EPA Publications Office publications@epa.ie
- Clerical amendments since:
 - Site characterisation form: T 100 value in Scenario 1 from 300 to 480 minutes (page 94 and 96).
 - Text relating to $R2^3$ and $R2^4$ GWPR (page 113).

Legal status

• Section 76 of the EPA Act – Codes of Practice *'practical guidance ...for the purposes of environmental protection'*

Building Regulations: - Technical Guidance Document H –
 …systems for single houses should comply with the…EPA Code of Practice 2009 Wastewater Treatment and Disposal Systems Serving Single Houses'
 if [a] technical specification is subsequently revised or updated by the issuing
 body, the new version may be used'

 Planning circular NRUP 01/2021 refers to application of the Code of Practice under Section 22(2)(c) of the Planning and Development Regulations which requires:

"...information on the on-site treatment system proposed and evidence as to the suitability of the site for the system proposed."

Transitional arrangements

2021 Code applied from 7th June 2021.
2009 Code could be used where planning permission had been applied for or site assessment commenced before 7th June 2021.

Key messages

- Proper site characterisation and assessment
- Proper design

- Proper follow on ... installation, commissioning and maintenance
 - Section 1.3 ... Variances allowable on existing sites, if all CoP criteria can not be met ... but there is a need to comply with Building Regulations, technical standards, and adequate protection of the environment and human health
- SR 66 from 2015 new National Annex included, and also called up by TGD H and considers EN Standards 1 to 7
- Sections 2.3 WFD, 2.4 Discharge Licences, 2.5 DWWTS Law, 2.6 – Protected Species and Areas

Main changes

Drip dispersal (120)
 Low pressure pipe distribution (90)
 Willow evapotranspiration systems with soil polishing filter

Willow evapotranspiration systems

Section 3.4 - minimising wastewater flow

Chapter 5 – Site characterisation

• Terminology change:

- The percolation test terminology has changed, from 'T-test' and 'P-test' to 'subsurface' and 'surface' test.
- This is a terminology change only, it does not affect how the tests are completed.

Percolation test:

- The percolation test methodology was also amended to allow it to extend to a percolation value of 120, permissible using drip dispersal.
- This is also reflected in Appendix D where the percolation test is set out in more detail.

Density of >6 houses per hectare ...

• Where 'X', 'E' or 'H' groundwater vulnerability, issues with *E. Coli* and nitrate

 Minimum depth of 500 mm of in situ suitable soil and / or subsoil required for suitable sites for discharge to ground

7

Chapter 6 – Determining site suitability and the appropriate DWWTS

- A new chapter to consolidate all the site characterisation criteria into one chapter:
 - Section 6.3 consolidates minimum separation distances.

(A separation distance of 25m is specified for free water surface constructed wetlands to neighbouring dwelling houses.)

 Section 6.4 consolidates the minimum unsaturated soil and/or subsoil depth requirements.

(These are the same as the 2009 Code except provision is made for lesser depths for drip dispersal systems in low permeability soils and infiltration areas following tertiary systems where certain levels of E.coli treatment is achieved. Infiltration areas for other tertiary systems require the same depths of unsaturated soil and/or subsoil as polishing filters following secondary systems.)

• Section 6.5 covers the interpretation of percolation test results.

(Provision has also been made for low-pressure pipe distribution and drip dispersal systems.)

18

Chapter 7 – Septic tank systems (incl. percolation areas)

- Section 7.1: S.R. 66 requires that the septic tank nominal and usable capacities are declared. The declared usable capacity of the septic tank being installed on site must be no less than the calculated design capacity. The text has been amended and table which referred to nominal capacity has been removed to clarify.
- Section 7.2.3, Table 7.3: specifies 12–32 mm washed gravel or broken stone aggregate.
- Section 7.2.4 and Figure 7.4: The text and figure clarify that the top of the trench gravel should not extend above ground level.
- Other criteria such depth to bedrock etc. are covered in Chapter 6 so are not repeated in this section.

Chapter 8 – Secondary treatment systems receiving septic tank effluent (soil filters, sand filters, constructed wetlands and packaged media filters)

Section 8.1.1: Intermittent soil filters

- Term 'intermittent soil filters' used to distinguish them from tertiary soil polishing filters (Section 10.1).
- Typical intermittent soil filter requirements are specified in Table 8.1.
- Section 8.1.2: Intermittent sand filters
 - Term 'intermittent sand filters' used to distinguish them from tertiary sand polishing filters (Section 10.2.1).
- Typical intermittent sand filter requirements are specified in Table 8.2.

Chapter 8 – Secondary treatment systems receiving septic tank effluent (soil filters, sand filters, constructed wetlands and packaged media filters)

 Section 8.1.3: The areas required for vertical flow reed beds have been amended to 4 m² per population equivalent.

• Section 8.1.7: Access to free water surface constructed wetlands is required to be controlled by fencing to the given specification. They are required to be located as far from dwellings as possible (see also table 6.2).

• Section 8.2.2 covers coconut husk media filters.

• Section 8.3 covers willow bed evapotranspiration systems.

Chapter 10 – Tertiary treatment systems receiving secondary treated effluent (including soil polishing filters)

- The chapter has been divided into:
 - tertiary soil polishing filters (10.1) for treatment and disposal of secondary effluent to ground;
 - tertiary treatment systems (10.2) where there is an additional treatment module (after the secondary treatment system) which then discharges to an infiltration area.
- Section 10.1 introduces low-pressure pipe distribution and drip dispersal systems.
- The minimum depths required are specified in Table 6.3.

 0.9m is required (in R1 and R2¹ areas), except for drip dispersal systems in low permeability soils (0.6m) and infiltration areas following tertiary systems where certain levels of E.coli treatment is achieved (0.6m).

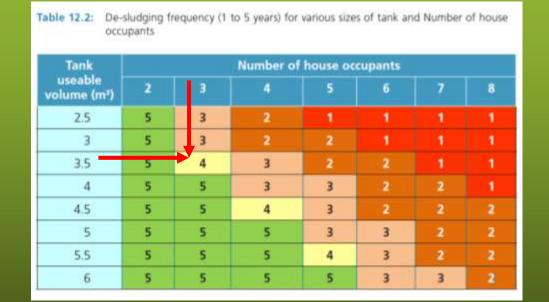
Tertiary treatment systems may be used where treatment over and above secondary treatment is necessary, e.g. nutrient and pathogens. The treatment performance of the system should match that need.

Chapter 10 – Tertiary treatment systems receiving secondary treated effluent (including soil polishing filters)

Table 10.1: Infiltration/treatment area and trench length design for tertiary treatment, per PE¹

Percolation values (PVs)	Pumped or underlying gravity discharge (Options 1 and 2)	Gravity discharge into 500mm wide trenches (Option 3)	Low- pressure pipe distribution into 300 mm wide trenches (Option 4)	Drip dispersal system (Option 5)	Tertiary infiltration area (Option 6)
	2 Area required per person (m²)	Trench length required per person (m)	Trench length required per person (m)	Area required per person (m²)	Area 5 required per person (m²)
$3 \le PV \le 20$	≥7.5	≥6	≥6	≥5	≥3.75
$21 < PV \le 40$	≥15	≥12	≥ <mark>1</mark> 2	<mark>≥14</mark>	≥7.5
$41 < PV \le 50$	≥30	≥17 ³	≥ 1 7	≥16	≥15
51 < PV ≤ 75	≥50	≥19	≥19	≥22	≥25
$76 < PV \le 90$			≥28	≥34	
91 < PV ≤ 120		9 <u>—</u> 3	<u> </u>	≥54	23

Chapters 11 and 12 – Installation, operation and maintenance


• References to legislation and standards have been bought up to date in Chapter 11.

• Section 11.3: The maximum number of outlet pipes from any distribution device is six.

 Section 11.5 covers installation and operation of low-pressure pipe distribution and drip dispersal systems.

• Section 12.2.2 provides new guidance on determining septic tank desludging frequency based on tank size and number of house occupants.

Chapters 11 and 12 – Installation, operation and maintenance

 Example: 3.5m³ tank for a 3-person house = every 4 years

6. DETERMINING SITE SUITABILITY AND THE APPROPRIATE DWWTS

6.1 Integration of the Desk Study and On-Site Assessment

The information gathered during the desk study and the on-site assessment is used to characterise the site and, if the site is deemed suitable, to choose and design an appropriate DWWTS.

In summary, determining site suitability means checking that all the following requirements relevant to the site are met:

- ▲ the natural slope is ≤1:8;
- all required minimum separation distances from the DWWTS can be met;
- all required minimum depths of unsaturated soil and/or subsoil are present on the portion of the site hosting the DWWTS;
- percolation values of the soil and/or subsoil are within the acceptable ranges;
- any other issues arising from the site characterisation.

These are detailed further below. Table 6.1 summarises the relevance of the data collected from the desk study and the on-site assessment.

The cumulative loading from on-site DWWTSs should also be considered, particularly in areas of high-density one-off housing (see Section 5.4.1).

Table 6.1: Information obtained from the desk study and on-site assessment

Information collected	Relevance	Factor determined
GWPR zoning Hydrological features Density of existing	Identifies groundwater protection requirements and receptors at risk Potential cumulative nutrient	Site restrictions

• Slope ≤ 1:8

 All required minimum separation distances from the DWWTS can be met

 All required minimum depths of unsaturated soil and/or subsoil are present on the portion of the site hosting the DWWTS

'Mottling' Record it and mention it's absence / presence at all times

Mottling

6.1 Integration of the Desk Study and On-Site Assessment

The information gathered during the desk study and the on-site assessment is used to characterise the site and, if the site is deemed suitable, to choose and design an appropriate DWWTS.

In summary, determining site suitability means checking that all the following requirements relevant to the site are met:

- \checkmark the natural slope is ≤1:8;
- all required minimum separation distances from the DWWTS can be met;
- all required minimum depths of unsaturated soil and/or subsoil are present on the portion of the site hosting the DWWTS;
- percolation values of the soil and/or subsoil are within the acceptable ranges;
- any other issues arising from the site characterisation.

These are detailed further below. Table 6.1 summarises the relevance of the data collected from the desk study and the on-site assessment.

The cumulative loading from on-site DWWTSs should also be considered, particularly in areas of high-density one-off housing (see Section 5.4.1).

Table 6.1: Information obtained from the desk study and on-site assessment

Information collected	Relevance	Factor determined
GWPR zoning Hydrological features Density of existing	Identifies groundwater protection requirements and receptors at risk Potential cumulative nutrient	Site restrictions

The nub of sites being suitable under the 2021 Code

Percolation values of soil and/or subsoil are within the acceptable ranges

- Percolation value of 3
 - 3 holes

Mub I: Less Lion	e Preparation						
Percolation Test	Hole	1		2		а	
Jepth from grou a top of hole (m			0		0		a
lepth from grou a base of hole (r			400		400		400
lepth of hole (m	mi		400		400		400
limensions of h ength a breadth		900 ×	290	300 ±	200	300 #	300
Rep 2: Pre-Soa	king Test Holer						
re-soak start	Date Time	22-May-2022 08-15	I I	22-May-2022 BE-15		22-May-2022 38-15	
nd pre-soak tart ach hole should	Date Time	22-May-2022 12-10	Anna ann	22-May-2022 12-10		22-May-2022 12.10	2
tep 3: Measuri	ng T _{ren}	. t		2			
ercolation Test	Hole No.					1	_
ate of test		- 23	May-22	29	May (22	23-0	low-2022
itse filled to 400	D Imiti		68:31		08:33		08.7ê
	at 300 mm		08.35		08.47		00.48
me water level			4.00		14:00		12.00
	eren (4 init						10.00
Time water level Time to drop 100 Average T _{uss}	mm(r _{int})						10.00

Percolation Test Hole		1			2			3	
Fill no.	Start Time (at 300 mm)	Finish Time (at 200 mm)	∆T (min)	Start Time (at 300 mm)	Finish Time (at 200 mm)	∆T (min)	Start Time (at 300 mm)	Finish Time (at 200 mm)	∆T (min)
1	08:35	08:44	9.00	08:47	09:02	15.00	08:48	09:01	13.00
2	08:44	08:54	10.00	09:02	09:18	16.00	09:01	09:15	14.00
3	08:54	09:07	13.00	09:18	09:35	17.00	09:15	09:32	17.0
Average ∆T Value			10.67			16.00			14.67
	Average ∆] [Hole No.1]		2.67 (T ₁)	Average ∆T [Hole No.2]		4.00 (T ₂)	Average ∆ [Hole No.3		3.67 (T

Comments:

S1, S2 and S3 confirm the classification of the soil as a sandy loam underlain by a gravelly SAND with occasional cobbles. All holes were empty on the moming of the test following two presoaks the previous day. The surface percolation test rates support the observations made on the trial hole and the visual assessment on the drainage and textural characteristics of the topsoil and the upper portion of the subsoil.

Step 5: Modified Method (where T₁₀₀ > 210 minutes)

Percolation Test Hole No.		1					Percolation Test Hole No.		2					
Fall of water in hole (mm)	Time Factor = T,	Start Time hh:mm	Finish Time hh:mm	Time of fall (mins) = T _m	K _n = T _r / T _m	T - Value = 4.45 /K _h	Fall of water in hole (mm)	Time Factor = T _r	Start Time hh:mm	Finish Time hh:mm	Time of fall (mins) = T _m	K _h = T _r / T _m	T- Value = 4.45 / K _h	
300 - 250 250 - 200 200 - 150 150 - 100 Average	8.1 9.7 11.9 14.1 T- Valu	e	T- Value	0.00 0.00 0.00 0.00	= (T ₁)	0.00	300 - 250 250 - 200 200 - 150 150 - 100 Average	8.1 9.7 11.9 14.1 T- Valu	e	T- Valu	0.00 0.00 0.00 0.00	= (T ₂)	0.00	
Percolation Test Hole No.		3					Result of	Test: Si			tion Valu min/25			

Percolation value of 24 – •

3 holes ullet

3.3(a) Subsurface Percolation Te	est for Subsoil			
Step 1: Test Hole Preparation				
Percolation Test Hole	1	2	3	1
Depth from ground surface to top of hole (mm) (A)	300	400	400	2
Depth from ground surface to base of hole (mm) (B)	700	800	800	3 Average ∆t
Depth of hole (mm) [B - A]	400	400	400	Value
Dimensions of hole [length x breadth (mm)]	300 <mark>x</mark> 300	300 x 300	320 <mark>x</mark> 300	
Step 2: Pre-Soaking Test Holes				Result of Te
Pre-soak start Date Time	22-May-2022	22-May-2022	22-May-2022 08:15	Comments
2nd pre-soak Date start Time	22-May-2022	22-May-2022	22-May-2022 12:10	SS1, SS2 an occasional gr support the o
Each hole should be pre-soaked tw	rice before the test is carried	out.		Step 5: Mo
Step 3: Measuring T ₁₀₀				Percolation
Percolation Test Hole No.	1	2	3	Test Hole No.
Date of test	23-05-2022	23-05-2022	23-05-2022	Fall of water in hole (mm)
Time filled to 400 mm	08:22	08:25	08:28	71
Time water level at 300 mm	09:21	09:36	09:47	300 - 250 250 - 200
Time (mn.) to drop 100 mm (T ₁₀₀)	59.00	71.00	79.00	200 - 150 150 - 100
Average T ₁₀₀			89.67	Average
If $T_{100} > 480$ minutes then Subsurfa If $T_{100} \le 210$ minutes then go to Ste If $T_{100} > 210$ minutes then go to Ste	p 4;	site unsuitable for discharge	e to ground	Percolation Test Hole No.

Percolation Test Hole		1			2			3	
Fill no.	Start Time (at 300 mm)	Finish Time (at 200 mm)	∆t (min)	Start Time (at 300 mm)	Finish Time (at 200 mm)	∆t (min)	Start Time (at 300 mm)	Finish Time (at 200 mm)	∆t (min)
1	09:21	10:34	73.00	09:36	10:54	78.00	09:47	11:12	85.00
2	10:34	11:57	83.00	10:54	12:37	103.00	11:12	12:46	94.00
3	11:57	13:54	117.00	12:37	14:49	132.00	12:46	14:44	118.00
Average ∆t Value		1	91.00			104.33			99.00

Result of Test: Subsurface Percolation Value =

24.53 (min/25 mm)

Comments:

SS1, SS2 and SS3 confirm the classification of the subsoil as a sandy SILT with occasional gravels, over a slightly sandy SILT/CLAY with occasional gravels. All holes were empty on the morning of the tests following two presoaks the previous day. The subsurface test rates support the observations made on the trial hole and the visual assessment with respect to the textural and drainage class of the subsoil.

Step 5: Modified Method (where T_{trop} > 210 minutes)

	1					Percolation Test Hole No.		2				
tor T	ime	Finish Time hh:mm	Time of fail (mins) = T _m	K _e - T _i / T _e	T - Vaue = 4.45 /K _h	Fall of water in hole (mm)	Time Factor = T,	Start Time hittmm	Finish Time hh.mm	Time of fail (mins) = T_	К _ы - Т, / Т _л	T - Value = 4.45 / K_
8.1			1			300 - 250	8.1			0.00		
9.7			0.00			250 - 200	9.7			1		1
11.9			0.00	<u>^</u>		200 - 150	11.9			0.002		E 3
14.1			0.00			150 - 100	14.1		i V	0.00		9 - 9
	8.1 9.7 (4.1	8.1 9.7 11.9 (4.1	Time httmm Time httmm 8.1	Time httmm Time httmm of fail (mircs) - T _m 8.1 0.00 9.7 0.00 11.9 0.00 4.1 0.00	Time httmm Time httmm of fail mins) - T -T 8.1 0.00 <t< td=""><td>Time hrumm Time hrumm of fall (mins) = T_w -T_v Value = 4.45 8.1 0.000 0.00 0.00 0.10</td><td>Time Infumm Time Infumm of fail (mins) = T_w -T_v (T_w Vaue = 4.45 (K_w in hole (mm) 8.1 0.00 300 - 250 250 - 200 250 - 200 250 - 200 250 - 150 150 - 150 1.9 0.000 150 - 100<</td><td>Time Intramm Time Intramm of fail (mircs) - T_m - T_r (T_m) Value - 4.45 (K_h) in hole (mm) Factor - T_r 8.1 0.00 300 - 250 8.1 9.7 0.00 250 - 200 9.7 11.9 0.00 11.9 150 - 100 11.9 14.1 0.00 11.9 150 - 100 14.1</td><td>e Start Time htrmm Finish Time htrmm Time of fail Tr K_s -T_, T T - Value - 4.45 7K_s Fail of water in hole (mm) Time Factor Time htrmm Start Time htrmm 8.1 0.00 300 - 250 8.1 300 - 250 9.7 9.7 0.00 250 - 200 250 - 200 11.9 11.9 11.9 4.1 0.00 11.9 11.9 11.9 11.9 11.9 11.9 14.1</td><td>e Start Time htmm Finish Time htmm Time of fail Tr_m Ks T, Tr_m T - Value A45 7Ks Fail of water in hole (mm) Time Factor T, Tr_m Finish Time htmm 8.1 0.00 300 - 250 8.1 300 - 250 9.7 1.0 1.9 0.00 11.9 1.0 1.0 1.0 1.0 1.1</td><td>e Start Time htrmm Finish Time htrmm Time of tall -T_w T - /T_w T - Value -4.45 /K_h Fall of water in hole (mm) Time Factor -T_v Start htrmm Finish Time htrmm Time of tall htrmm Time of tall htrm Time htrm Time htrm Time htrm Time htrm Time htrm Time htrm 1</td><td>e Start Time htrmm Finish Time htrmm Time of fail T_m Ks T_m T - Value T_m Fail of water t_m Time Factor T_m Finish Time T_m Time of fail t_m Ks T_m T T_m Ks T_m Time T_m Finish trimm Time t_m Finish t_m Time t_m Ks T_m Time T_m Time t_m Finish t_m Time t_m Ks T_m T T_m Ks T_m T T_m Ks T_m T T_m Ks T_m T T_m Ks T_m T T_m Ks T_m T T_m T T_m Ks T_m T T_m T T_m Ks Start T T_m Ks Start T m T m Ks Start T m T m Ks Start T m T m Ks Start T m Ks Start T</td></t<>	Time hrumm Time hrumm of fall (mins) = T_w -T_v Value = 4.45 8.1 0.000 0.00 0.00 0.10	Time Infumm Time Infumm of fail (mins) = T_w -T_v (T_w Vaue = 4.45 (K_w in hole (mm) 8.1 0.00 300 - 250 250 - 200 250 - 200 250 - 200 250 - 150 150 - 150 1.9 0.000 150 - 100<	Time Intramm Time Intramm of fail (mircs) - T_m - T_r (T_m) Value - 4.45 (K_h) in hole (mm) Factor - T_r 8.1 0.00 300 - 250 8.1 9.7 0.00 250 - 200 9.7 11.9 0.00 11.9 150 - 100 11.9 14.1 0.00 11.9 150 - 100 14.1	e Start Time htrmm Finish Time htrmm Time of fail Tr K_s -T_, T T - Value - 4.45 7K_s Fail of water in hole (mm) Time Factor Time htrmm Start Time htrmm 8.1 0.00 300 - 250 8.1 300 - 250 9.7 9.7 0.00 250 - 200 250 - 200 11.9 11.9 11.9 4.1 0.00 11.9 11.9 11.9 11.9 11.9 11.9 14.1	e Start Time htmm Finish Time htmm Time of fail Tr_m Ks T, Tr_m T - Value A45 7Ks Fail of water in hole (mm) Time Factor T, Tr_m Finish Time htmm 8.1 0.00 300 - 250 8.1 300 - 250 9.7 1.0 1.9 0.00 11.9 1.0 1.0 1.0 1.0 1.1	e Start Time htrmm Finish Time htrmm Time of tall -T_w T - /T_w T - Value -4.45 /K_h Fall of water in hole (mm) Time Factor -T_v Start htrmm Finish Time htrmm Time of tall htrmm Time of tall htrm Time htrm Time htrm Time htrm Time htrm Time htrm Time htrm 1	e Start Time htrmm Finish Time htrmm Time of fail T _m Ks T _m T - Value T _m Fail of water t _m Time Factor T _m Finish Time T _m Time of fail t _m Ks T _m T T _m Ks T _m Time T _m Finish trimm Time t _m Finish t _m Time t _m Ks T _m Time T _m Time t _m Finish t _m Time t _m Ks T _m T T _m T T _m Ks T _m T T _m T T _m Ks Start T T _m Ks Start T m T m Ks Start T m T m Ks Start T m T m Ks Start T m Ks Start T

ŦIJ

• Percolation value of 39 -

• 3 holes

Percolation Test Hole	1	2	3
Depth from ground surface to top of hole (mm) (A)	300	400	400
Depth from ground surface to base of hole (mm) (B)	700	800	800
Depth of hole (mm) [B - A]	400	400	400
Dimensions of hole [length x breadth (mm)]	300 x 300	300 x 300	320 x 300
Step 2: Pre-Soaking Test Holes			
Pre-soak start Date Time	22-May-2022 08:15	22-May-2022 08:15	22-May-2022 08:15
2nd pre-soak Date start Time	22-May-2022 15:10	22-May-2022	22-May-2022 15:10
Each hole should be pre-soaked t	wice before the test is carried	out.	
Step 3: Measuring T _{too}			
Percolation Test Hole No.	1	2	3
Date of test	23-05-2022	23-05-2022	23-05-2022
Time filled to 400 mm	08:22	08:25	08:28
Time water level at 300 mm	09:54	10:21	10:18
Time (min.) to drop 100 mm (T ₁₀₀)	92.00	116.00	110.00
Average T ₁₀₀			106.00

Fill no. Start Finish Δt (min) Start Finish Δt (min) Start Finish Time Ti	∆t (min)
1 09:54 11:53 119.00 10:21 12:46 145.00 10:18 12:29	131.0
2 11:53 14:10 137.00 12:46 15:37 171.00 12:29 15:01	152.0
3 14:10 16:51 161.00 15:37 18:53 196.00 15:01 18:14	193.0
Average Δt Value 139.00 170.67	158.6

Result of Test: Subsurface Percolation Value =

39.03 (min/25 mm)

Comments:

SS1, SS2 and SS3 confirm the classification of the subsoil as a sandy SLT/CLAY with occasional gravels, over a slightly sandy SLT/CLAY with occasional gravels. All holes were empty on the morning of the tests following two presoaks the previous day. The subsurface test rates support the observations made on the trial hole and the visual assessment with respect to the textural and drainage class of the subsoil.

Step 5: Modified Method (where T₁₀₀ > 210 minutes)

olation Iole No.		1					Percolation Test Hole No.		2				
f water le (mm)		Start Time hh.mm	Finish Time hhumm	Time of fail (mins) = T _m	К _в - Т, / Т,	T - Value = 4.45 /K _h	Fall of water in hole (mm)	Time Factor = T,	Start Time hft:mm	Finish Time hh.mm	Time of fail (mins) = T _m	К _в - Т; / Т _п	T - Value = 4.45 / K_
250	8.1			0.00			300 - 250	8.1			0.00		1
200	9.7			0.00			250 - 200	9.7			0.00		1. B
150	11.9			0.00			200 - 150	11.9			0.00		1
100	14.1			0.00			150 - 100	14.1		i Vi	0.00		6 8
age plation	14.1 T- Valu		T- Valu	e Hole 1	1	0.00		T- Valu	surface	Percol	e Hole 2 lation Va	alue =	0.00
lole No.		3								0.00	min/25	mm)	

• Percolation value of 50 using Modified Method –

3 holes

3.3(a) Subsurfac	ce Percolation	lest for Subsoil		
Step 1: Test Hole	e Preparation			
Percolation Tes	t Hole	1	2	3
Depth from grou to top of hole (m		300	400	400
Depth from grou to base of hole (r		700	800	800
Depth of hole (m	m) [B - A]	400	400	400
Dimensions of he [length x breadth		300 x 300	300 x 300	320 x 300
Step 2: Pre-Soa	king Test Holes			
Pre-soak start	Date Time	22-May-2022 08:15	22-May-2022 08:15	22-May-2022 08:15
2nd pre-soak start	Date Time	22-May-2022 15:10	22-May-2022	22-May-2022 15:10
Each hole should	be pre-soaked t	wice before the test is carrie	d out.	
Step 3: Measurin	ng T ₁₀₀			
Percolation Tes	t Hole No.	1	2	3
Date of test		23-05-2022	23-05-2022	23-05-2022
Time filled to 400) mm	08:22	08:25	08:28
Time water level	at 300 mm	11:53	11:56	12:02
Time (min.) to drop	o 100 mm (T ₁₀₀)	211.00	211.00	214.00
Average T_{100}			E	212.00
If T _{1m} > 480 minu	ites then Subsur	face Percolation value >120 ·	 site unsuitable for discharged 	rge to ground

If $T_{too} \le 210$ minutes then go to Step 4; If $T_{too} > 210$ minutes then go to Step 5; Step 5: Modified Method (where T100 > 210 minutes)

Percolation Test Hole No.		1				
Fall of water in hole (mm)	Time Factor = T _t	Start Time htcrom	Finish Time hhumm	Time of fail (mins) = T _m	K _n -T ₁ /T ₂	T Value = 4.45 / K _h
300 - 250	8.1	11:53	13:48	115.00	0.07	63.18
250 - 200	9.7	13:48	15:44	116.00	0.08	53.22
200 - 150	11.9	15:44	17:40	118.00	0.10	43.38
150 - 100	14.1	17:40	19:36	116.00	0.12	36.61

Percolation Test Hole No.		3				
Fall of water in hole (mm)	Time Factor = T _t	Start Time hfumm	Finish Tim§e hh:mm	Time of fail (mins) = T _m	K _n = T ₁ / T _n	T - Value = 4.45 /K _b
300 - 250	8.1	12:02	14:00	118.00	0.07	64.83
250 - 200	9.7	14:00	15:58	118.00	0.08	54.13
200 - 150	11.9	15:58	17:59	121.00	0.10	45.25
150 - 100	14.1	17:59	20:00	121.00	0.12	38.19

Percolation Test Hole No.	2					
Fall of water in hole (mm)	Time Factor = T _i	Start Time hh:mm	Finish Time hh:mm	Time of tail (mins) = T_	К _а - Т, / Т,	T- Value = 4.45 / K
300 - 250	8.1	11:56	13:54	118.00	0.07	64.83
250 - 200	9.7	13:54	15:52	118.00	0.08	54.13
200 - 150	11.9	15:52	10000000111	119.00	0.10	44.50
150 - 100	14.1	17:51	19:50	119.00	0.12	37.56
Average Result of Te	T- Valu	surface	Percol		alue =	50.25
		49	.98 (min/25 i	mm)	
Comments:						

SS1, SS2 and SS3 confirm the classification of the subsoil as a sandy SILT/CLAY with occasional gravels, over a slightly sandy SILT/CLAY with occasional gravels. All holes were empty on the morning of the tests following two presoaks the previous day. The subsurface test rates support the observations made on the trial hole and the visual assessment with respect to the textural and drainage class of the subsoil.

- Percolation value of 62 using Modified Method
 - 14 hours on site
- Percolation value of 75 using Modified Method
 - 17 hours on site
- Percolation value of 90 using Modified Method
 - 20 hours on site
- Percolation value of 120 using Modified Method
 - 26.5 hours on site

Standard and Modified Surface and Subsurface Percolation Tests

The standard percolation test (see Steps 1–4, Appendix D) should be carried out at all sites where the subsoil characteristics suggest that the percolation result might be less than or equal to 50.

In the case of CLAY or SILT/CLAY subsoil, where the percolation value is likely to be greater than 50, a modified percolation test may need to be carried out. This test is outlined in Step 5 of Appendix D and is a modification of the standard method whereby an approximation of the percolation value for relatively poorly permeable sites can be made in a shorter time frame, thus reducing to a degree the time spent on site.

4

Difficult sites and difficult questions

Bedrock ... what is it?

... the 'unweathered' rock below the cover of unlithified deposits ...

This 'unweathered' descriptor is crucial !

Bedrock ... where is it?

Percolation tests – existing houses proposing extensions ... bedroom numbers not changing

Percolation tests – existing houses and bedroom numbers rising ... appraisal of existing system required ...

Percolation tests – existing houses ... appraisal of existing system required ... and proof of infiltration / treatment area ...

Percolation tests – existing houses ... bedrooms numbers rising and Site Characterisation needed...

1.3 Variances for Existing Systems, Sensitive Areas and New Technologies

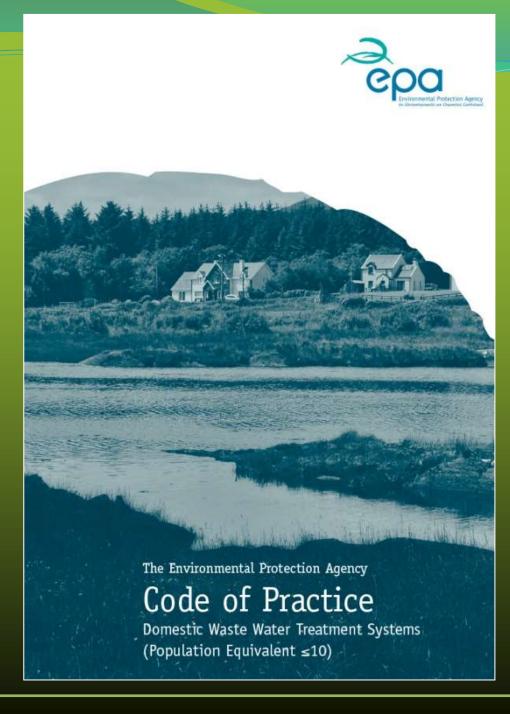
Adoption without modification of the specifications in this document may not, in all circumstances, be appropriate.

In sensitive areas, such as bathing water catchments, high status river catchments, high status lake catchments, drinking water source protection areas or zones of contribution to public water supplies, localities adjacent to shellfish areas designated through the Shellfish Water Directive (2006/113/EC) or pearl mussel catchments, local authorities may apply and require standards higher than those specified within this CoP.

Existing DWWTSs may not meet the performance requirements as set out in this CoP. If existing DWWTSs are being upgraded, variances to the requirements set out within this CoP may be considered by the local authority where the authority is satisfied that the proposed upgrade will protect human health and the environment. DWWTSs serving buildings of architectural or historical interest may be especially likely to give rise to such circumstances. Homeowners should consult with their local authority to determine if planning permission is required for proposed upgrades.

The use of new and innovative products and technologies must be considered in detail by local authorities on a case-by-case basis with due regard to:

- compliance with building regulations;
- compliance with technical standards as appropriate;
- evidence of suitability internationally or in Ireland;
- adequate protection of the environment and human health.


Percolation tests – existing houses and the potential for 'relaxing' separation distances ...

- Public/group water supply abstraction points/wells 60 m
- Down-gradient domestic well 30 m to 60 m, depending on subsoil type and groundwater flow direction
- Alongside domestic well 25 m
- Up-gradient domestic well 15 m
- Karst feature 15 m
- Lake or foreshore 50 m
- Watercourse/stream 10 m
- Open drain or drainage ditch 10 m
- Surface water soakaways 5 m
- Road 4 m
- Slope break/cuts 4 m

Percolation tests – existing houses and the potential for 'relaxing' separation distances ...

- Own dwelling house 10 m / 7 m
- Site boundaries 3 m

